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Abstract

This minireview traces the photosynthesis genes, their structure, function and expression in Rhodobacter
sphaeroides 2.4.1, as applied to our understanding of the inducible photosynthetic intracytoplasmic membrane
system or ICM. This focus has represented the research interests of this laboratory from the late 1960s to the
present. This opportunity has been used to highlight the contributions of students and postdoctorals to this research
effort. The work described here took place in a much greater and much broader context than what can be conveyed
here. The ‘timeline’ begins with a clear acknowledgment of the work of June Lascelles and William Sistrom,
whose foresight intuitively recognized the necessity of a ‘genetic’ approach to the study of photosynthesis in R.
sphaeroides. The ‘timeline’ concludes with the completed genome sequence of R. sphaeroides 2.4.1. However, it
is hoped the reader will recognize this event as not just a new beginning, but also as another hallmark describing
this continuum.

Abbreviations: BChl – bacteriochlorophyll; Crt – carotenoid; DMSO – dimethylsulfoxide; ETC – electron
transport chain; ICM – intracytoplasmic membranes; LH 1 – B875 spectral complex; LH II – B800-850 spectral
complex; PS – photosynthesis; RC – reaction center; SE – spheroidene; SO – spheroidenone

Introduction

I have interpreted, rather narrowly, the charge given
by Govindjee and Howard Gest, who have kindly in-
vited me to write this article. I have restricted my
discussions of photosynthesis genes to those directing
and regulating the synthesis of the ICM (intracytoplas-
mic membranes; photosynthetic membranes only in
Rhodobacter sphaeroides). Further, I have emphasized
the contributions from our laboratory in an effort to
acknowledge the many and formidable students and
postdoctorals with whom I have had the honor to
associate. Finally, I am a microbial chauvinist, for
which I make no apologies, and therefore I have at-

tempted to view the photosynthesis genes through the
behavior of Rhodobacter sphaeroides as that might
occur in situ. For a general review of the ‘lifestyle’
of photosynthetic prokaryotes, see Pfennig (1978).
For general reviews which follow the work described
herein, see Kaplan (1978, 1981, 1988a, b), Kaplan et
al. (1979), Kaplan and Arntzen (1982), Donohue and
Kaplan (1986), Kaplan and Lee (1992), Lee and Ka-
plan (1996), Zeilstra-Ryalls et al. (1998a, b), and Oh
and Kaplan (2001). At the suggestion of Govindjee, a
photograph of myself and my current research group
is shown (Figures 1 and 2).
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Figure 1. The author (Sam Kaplan) in his office in Texas.

Early efforts

The earliest efforts to define, in the broadest possible
sense, the genomic structure and function as these
relate to the ICM of Rhodobacter sphaeroides (origin-
ally Rhodopseudomonas spheroides) were conducted
in the laboratories of Drs June Lascelles (Lascelles
1978) and William Sistrom (Sistrom 1978; Sistrom
et al. 1986), both of whom employed a biochemical-
genetic approach to these early studies (see figures
3 and 4 for photographs of Lascelles and Sistrom,
respectively).

F.E. Nano and C.S. Fornari1 characterized the plas-
mids of R. sphaeroides (Fornari et al. 1984; Nano and
Kaplan 1984). These and other efforts were intended
to develop methods to obtain, propagate, and move
DNA molecules between strains of R. sphaeroides
(Miller and Kaplan 1978; Fornari and Kaplan 1982;
Nano et al. 1985; Tai et al. 1988a; Moore and Kaplan
1989; Varga and Kaplan 1989; Donohue and Kaplan
1991; Suwanto and Kaplan 1992; Nereng and Kaplan
1998). The first major breakthrough came with the
isolation of a DNA fragment by J.C. Williams (Wil-
liams et al. 1983, 1984) in George Feher’s laboratory
together with the assistance of the M.I. Simon laborat-
ory at University of California at San Diego (UCSD).
These DNA fragments contained the reaction center
(RC) L and M genes, subsequently designated pufL,
M.

J. Davis2 (Davis et al. 1988) created the first dir-
ected mutation of a photosynthesis (PS) gene in R.
sphaeroides. From that point on, many laboratories
began to define those DNA segments, genes, mutants,
etc., which encompass the PS gene cluster and assor-
ted regulatory elements (Lynn et al. 1979; Marrs et al.
1980; Fornari and Kaplan 1983; Meinhardt et al. 1985;

Hallenbeck and Kaplan 1987, 1988; Dryden and Ka-
plan 1990, 1993; Yun et al. 1990; Sabaty and Kaplan
1995; Gomelsky and Kaplan 1996; Mouncey et al.
2000). It was determined that in R. sphaeroides both
cycA (cytochrome c2, extensively studied by the T.J.
Donohue2 laboratory – Donohue et al. 1988b; Bradner
et al. 1988) and the puc operon (Wu et al. 1991) en-
coding the B800–850 (light harvesting complex II, LH
II) complex were closely linked to the PS gene cluster
unlike that originally observed by J.E. Hearst’s labor-
atory (Youvan et al. 1984) for Rhodobacter capsulatus
where the sequence of the entire PS gene cluster was a
remarkable achievement. The PS gene cluster in strain
NCIB 8253 was sequenced by C.N. Hunter’s labor-
atory (Naylor et al. 1999). We sequenced the entire
∼65 Kb-gene cluster from strain 2.4.1 (Donohue et al.
1986a, b; Kiley et al. 1987; Kiley and Kaplan 1987;
McEwan et al. 1989; Choudhary and Kaplan 2000).
See Figure 5 for the 65 Kb cluster from strain 2.4.1.

Some years earlier, J. Chory1 (Chory and Kaplan
1982a) developed an R. sphaeroides-based in vitro
transcription/translation system (Muller et al. 1985a,
b; Chory et al. 1985). This system was used to pro-
duce, in vitro, the Form I carboxylase and other PS
gene products.

Characteristic of the organization of most of the
PS genes is a tight transcriptional coupling (Kiley
and Kaplan 1988). Another organizational character-
istic of both the puf and puc operons is the existence
of differential gene expression of upstream versus
downstream genes (Zhu et al. 1986; DeHoff et al.
1988; Donohue et al. 1988a; Lee et al. 1989a), and
a short, translated open reading frame, pufK (Gong
et al. 1994; Gong and Kaplan 1996), immediately
upstream of the pufBALMX structural genes (Figure
5). Regulatory sequences, which direct the binding of
the R. sphaeroides global regulator PrrA (Eraso and
Kaplan 1994), are apparently present (Figure 5). Bind-
ing sequences for the repressor PpsR (TGT N12ACA,
Lee and Kaplan 1992a, 1995; Penfold and Pemberton
1994; Gomelsky and Kaplan 1995a, 1997) are posi-
tioned upstream of the puc structural genes, as well
as some carotenoid (crt) and bacteriochlophyll (bch)
genes (Figure 5). Uniquely positioned upstream of the
bchE and pucB genes is a binding sequence for the R.
sphaeroides FnrL protein (Zeilstra-Ryalls and Kaplan
1997; Oh et al. 2000) and finally, adding to the com-
plexity of puc operon expression is an IHF binding
sequence which overlaps the FnrL-binding sequence
(Lee et al. 1993, Figure 5). We have shown that PrrA
can interact with other regulatory proteins, e.g., FnrL,
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Figure 2. Current members of the Kaplan laboratory. From left to right; Rebecca Cox, In-Jeong Ko, Agnes Puskas, Madu Choudhary, Jung
Hyeob Roh, Jeong-Il Oh, Xiaohua Zeng, Raimo Pollanen, Bill Smith, Canna Ross, Joy Marshall and Chris Mackenzie.

Figure 3. June Lascelles.

to jointly activate gene expression (Oh et al. 2000),
which further embellishes the regulatory response.

Despite this emphasis on things ‘DNA,’ the ICM
is composed of protein, lipid, pigments, metal, ions,
quinones, etc. Pam Fraker1 successfully developed

Figure 4. William Sistrom.

methods for the large-scale purification of isolated
ICM (Fraker and Kaplan 1971) or ‘chromatophores,’
as originally defined by Al Vatter and Ralph Wolfe
(1958). Fraker was amongst the very first, if not the
first, to demonstrate that bacteriochlorophyll (BChl)



98

was bound noncovalently to specific protein species
within the ICM (Fraker and Kaplan 1972). These stud-
ies were followed by the studies of other students
(Huang and Kaplan 1973a–c; Shepherd and Kaplan
1978a; Cohen and Kaplan 1981a, b; Hoger and Ka-
plan 1985; Hoger et al. 1986). V.D.-H. Ding1, D.
Baumgardner3 and C.D. Deal1, together with W.D.
Shepherd1 (Ding and Kaplan 1976; Baumgardner et
al. 1980; Deal and Kaplan 1983a–c; Shepherd and
Kaplan 1983), as well as the Robert Niederman labor-
atory (Niederman and Gibson 1978) characterized the
cell envelope layers so that we could readily assess
the purity, fractionation and interrelationships between
the various membrane systems. Shepherd1 (Shepherd
et al. 1981) provided a qualitative and quantitative
approach and addressed protein targeting and localiz-
ation in bacteria.

Working with Rhodopseudomonas viridis, Deisen-
hofer et al. (1985) crystallized the reaction center
(RC). Shortly thereafter, George Fehers’ and Jim Nor-
ris’ laboratories (Allen et al. 1986; Schiffer and Norris
1993) crystallized the RC from R. sphaeroides for
which a very robust gene exchange system had been
developed (Nano et al. 1985; Davis et al. 1988;
Suwanto and Kaplan 1992; Kaplan and Donohue
1993; Zeilstra-Ryalls et al. 1998b). C.N. Hunter and
collaborators provided detailed spectroscopic analyses
using a variety of cleverly constructed mutant strains
of R. sphaeroides (Jones et al. 1992).

Recent efforts

Several curiosities do remain. There is a second pucBA
(pucBAII) gene cluster, including regulatory sequences
(Lee et al. 1989b; X. Zeng and S. Kaplan, 2001) and
which maps to chromosome I (CI) at position 1430 Kb
clockwise from the PS gene cluster. Other elements
which are involved either directly or indirectly or in
a regulatory fashion in PS gene expression are the
ccoNOQP operon (Zeilstra-Ryalls and Kaplan 1995a;
O’Gara et al. 1998; Zeilstra-Ryalls et al. 1998a; Oh
and Kaplan 1999), the rdxBHIS operon (O’Gara et al.
1998; Roh and Kaplan 2000, Figure 5A) and cycY
(Zeilstra-Ryalls and Kaplan 1995b), first described for
R. capsulatus (Myllykallio et al. 1999) and the spb
gene (Shimada et al. 1996). The ccoNOQP operon
encodes the cbb3 terminal oxidase; the rdxBHIS en-
codes an assemblage of redox proteins which interact
with the cbb3 terminal oxidase. These are involved
in the regulation of PS gene expression through the

two-component Prr activation system (Eraso and Ka-
plan 1994, 1995; O’Gara et al. 1998). They also
provide reducing equivalents, under anaerobic condi-
tions, to a hypothetical ‘OXO’-donor, which is used in
the conversion of spheroidene (SE) to spheroidenone
(SO) (Yeliseev et al. 1996; Yeliseev and Kaplan 1997;
O’Gara and Kaplan 1997).

Cell biology

During the period of rapid PS gene discovery, our
laboratory followed several independent lines of in-
quiry. J. Chory1, P.J. Kiley1, T.J. Donohue2, A.R.
Varga2 and others (Chory and Kaplan 1982b; Chory
et al. 1984; Jackson et al. 1987; Kiley et al. 1988)
provided a detailed kinetic analysis of the develop-
ment and function of the photosynthetic apparatus.
Earlier, experiments initiated by M.H. Kozakowski2

(Kosakowski and Kaplan 1974), and continued by
R.T. Fraley1 and D. Leuking2, and then G. Yen1,
B.D. Cain1 and T.J. Donohue2 (Leuking et al. 1978;
Wraight et al. 1978; Fraley et al. 1978a,b, 1979a,b;
Cain et al. 1981, 1982; Yen et al. 1982, 1984; Ka-
plan et al. 1983; Snozzi and Crofts 1984; Hoger
et al. 1987) shed important new information on the
fate of the photosynthetic apparatus in steady-state
photosynthetically growing R. sphaeroides.

Coming of age

Antonius Suwanto1 (Suwanto and Kaplan 1989a,b)
determined the genome architecture of R. sphaeroides
and thereby enabled the placement of all of the rel-
evant PS and regulatory genes throughout the gen-
ome. Suwanto revealed, for the first time, that
prokaryotes could possess more than a single chro-
mosome. Final confirmation of the genome archi-
tecture came with the recent genome sequence of
R. sphaeroides 2.4.1 by the Joint Genome Institute
and our laboratory (www.rhodobacter.org or www-
mmg.med.uth.tmc.edu/sphaeroides/).

Collectively, studies initiated by Y.S. Zhu1 and J.K.
Lee1 (Zhu et al. 1985, 1986; Lee et al. 1989a) yiel-
ded an analysis of PS mRNA species. In addition,
the first definable regulatory mutants were isolated by
J.K. Lee1 (Lee et al. 1989a, 1993; Lee and Kaplan
1992a,b), who built upon the genetic and biochemical
work of P.J. Kiley1 (Kiley and Kaplan 1988; Kiley
et al. 1988). Lee1 also delineated the complexity of
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Figure 5. Model for the regulation of PS gene expression in R. sphaeroides. (A) Respiratory and photosynthetic electron transport pathways and
coupled signal tranduction pathways. Red arrows indicate phototsynthetic cyclic electron flow. The thickness of the arrows is a measure of the
relative contribution of cytochromes c2 and cy to channel electrons from the bc1 complex to the cbb3 oxidase. The cbb3 oxidase is composed
of CcoN, O, Q, and P subunits; the redox centers and intramolecular electron transfer within the cbb3 oxidase are depicted. PrrC is part of the
signaling pathway and crosses membrane. The histidine kinase, PrrB, is a membrane-bound protein and presumably exists as a dimmer. (B
and C) Tetrapyrrole biosynthetic pathway and PS gene cluster of R. sphaeroides 2.4.1. The regulation of PS genes, which is either established
or predicted on the basis of sequence analyses, is depicted by using the regulatory symbols (PrrA: PrrBA two-component system, PpsR:
AppA/PpsR-antirepressor/repressor system, and FnrL). The question mark below a regulatory symbol indicates that regulation by the cognate
regulator is inferred from sequence analyses only. The arrows with a ‘+’ sign and blunt arrows represent induction under oxygen-limiting
conditions (semiaerobic and anaerobic) and repression under high-oxygen conditions, respectively. TspO affects the expression of PpsR target
genes by controlling the efflux of (a) porphyrin intermediate(s), probably protoporphyrinogen IX or beyond, of the tetrapyrrole biosynthetic
pathway enclosed in the grey box. The arrows below the PS genes represent transcriptional organization and direction. The puc, puf, and puhA
encode the structural polypeptides and assembly factors of the photochemical reaction center and light harvesting complexes (B800–850 and
B875). Abbreviations: DMSO, dimethyl sulfoxide; RC, photochemical reaction center; Q-pool, quinone pool; bc1, bc1 complex; c2 and cy ,
cytochromes c2 and cy ; aa3, aa3 cytochrome c oxidase; Qxt, quinol oxidase; hv, light; red, reduced; ALA, 5-aminolevulinic acid; Bchl a,
bacteriochlorophyll a. This figure and legend are reprinted with the kind permission of Blackwell Sciences, Blackwell Publishers, Polity Press.
It first appeared in ‘Generalized approach to the regulation and integration of gene expression,’ Mol. Microbiol., Vol 39, No. 5, pp. 1116–1123
(2001). For a color version of this figure, see section in the front of the issue.
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factors involved in the control and expression of the
puc operon (Lee and Kaplan 1992a, b; Lee et al.
1993). J.M. Eraso2 (Eraso and Kaplan 1994, 1995,
1996) extended the work of Lee by defining the Prr
two-component activation system from those mutants
isolated by Lee (see Figure 5A). Eraso2 (Eraso and
Kaplan 2000) also revealed the global nature of the
response regulator PrrA control over PS gene expres-
sion. F.R. Tabita’s laboratory demonstrated the import-
ance of PrrA control of genes involved in both CO2
and N2 fixation (Joshi and Tabita 1996). S. Ouchane2

(Ouchane and Kaplan 1999) formally demonstrated
the membrane topology of the histidine kinase PrrB.

M. Gomelsky2 went on to characterize the PpsR
repressor/AppA antirepressor system (Gomelsky and
Kaplan 1995a, b, 1997, 1998; Gomelsky et al. 2000),
following the very first demonstration by Penfold and
Pemberton (1994) of the ppsR gene, mapping to the
PS gene cluster (Figure 5) PpsR encodes a repressor of
PS genes involved in pigment biosynthesis and the puc
operon. Gomelsky2 (Gomelsky and Kaplan 1995a–c)
discovered the existence of appA, encoding a redox
active protein which appears to act as an antirepressor
through its presumed direct interaction with the PpsR
repressor (Figure 5A). The AppA protein was shown
to bind a flavin at the amino terminal end, as well
as other ligands. Gomelsky2 (Gomelsky and Kaplan
1997, 1998) also showed that the PpsR/AppA pair
plays a significant role in light regulation of PS gene
expression.

J.H. Zeilstra-Ryalls2 (Zeilstra-Ryalls and Kaplan
1995a, b, 1996) continued the work of E. Neidle2

(Neidle and Kaplan 1993a, b) who defined the ex-
pression of the hemA and hemT genes, originally
discovered by T.-N. Tai1 (Tai et al. 1988b) encoding
isoenzymic forms of 5-aminolevulinic acid synthase
(Figure 5B). Zeilstra-Ryalls2 demonstrated the exist-
ence of an E. coli Fnr homologue (designated FnrL,
L in honor of June Lascelles) in R. sphaeroides, as
well as the ccoNOQP operon encoding the cbb3 ter-
minal oxidase (Figures 5A, B). Immediately down-
stream of the cco operon, she discovered the rdxB
gene and operon (see below) a homolog of the rdxA
gene, which had been discovered by Neidle2 (Neidle
and Kaplan 1992). Zeilstra-Ryalls2 revealed that in
R. sphaeroides, FnrL is involved in the regulation
of a highly selective set of PS genes (Zeilstra-Ryalls
and Kaplan 1997), which are critical in porphyrin
biosynthesis (Figure 5B). She also showed, together
with the R.G. Kranz laboratory (Zeilstra-Ryalls et al.
1997), that FnrL was essential to the expression of

the dimethylsulfoxide (DMSO) reductase system of R.
sphaeroides and R. capsulatus.

N.J. Mouncey2 continued the studies of the DMSO
reductase (Mouncey et al. 1997; Mouncey and
Kaplan 1998a–c, dor operon) of R. sphaeroides, which
is also under redox control by the cbb3/PrrBA sys-
tem. Mouncey2 (Mouncey and Kaplan 1998a) also
revealed that FnrL was critical to cco NOQP operon
expression and that under anaerobic conditions, cco
expression was twice that under aerobic growth. Im-
portantly, low O2 conditions showed the highest levels
of cco expression dependent upon FnrL.

Gaining perspective

J.P. O’Gara2 created a more rigorously defined muta-
tion in ccoP (O’Gara and Kaplan 1997) as well as in
the downstream rdxB gene of the rdxBHIS operon. He
demonstrated that all such mutations led to the aerobic
expression of the PS genes. In a collaborative effort
with J.M. Eraso2 (O’Gara et al. 1998), he showed that
expression of the PS genes in Cco and Rdx mutants
was dependent upon an intact Prr two-component ac-
tivation system, and therefore concluded that a signal
transduction pathway existed between the cbb3 ter-
minal oxidase and the Prr system (Figure 5A). Eraso2

(Eraso and Kaplan 2000) showed that the PrrC protein
is part of this pathway. These findings, and those to
follow, formally established innovative hypothesis ad-
vanced by G. Cohen-Bazire et al. (1956). A similar
interpretation was also reached by P.L. Hallenbeck1

studying the control of genes involved in CO2 fixation
(Hallenbeck et al. 1990a, b).

J.P. O’Gara2 et al. observed that mutants of
cbb3 and RdxB also gave rise to cells which, when
grown photosynthetically, contained almost exclus-
ively spheroidenone (SO, pink) as the major caroten-
oid instead of spheroidene (SE, orange). These find-
ings coincided with studies of A. Yeliseev2 (Yeliseev
et al. 1996), who showed that the ratio of SE/SO
was determined by the redox state of the growing
cells, with SO predominating under more oxidized
conditions. Yeliseev2 also revealed that assembly of
the B800–850 complex preferentially incorporated SE
relative to SO, but the RC and B875 complexes
showed no apparent Crt preferences (Yeliseev et al.
1996). These studies also raised an interesting para-
dox, namely, what is the source of the 2-OXO group
of SO under anaerobic conditions? Yeliseev2 showed
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that water is not the source, leaving open an important
question (Yeliseev and Kaplan 1997).

A. Yeliseev demonstrated that crtK of R. sphaero-
ides (Figure 5C) actually encodes an outer membrane
protein and not an enzyme in Crt biosynthesis (desig-
nated TspO, Yeliseev and Kaplan 1995, 1999, 2000),
whose absence leads to an acceleration in the tran-
scription of the puc operon and genes of the BChl
and Crt biosynthetic pathways during the transition
of cells from aerobic to anaerobic growth (Figure
5B). In a collaborative study with Karl Krueger at
George Washington University, Yeliseev2 (Yeliseev et
al. 1997) revealed that the rat PrK18 homologue (en-
coding the mammalian peripheral benzodiazepine re-
ceptor) of the R. sphaeroides TspO could substitute for
the bacterial TspO (CrtK renamed) in R. sphaeroides
strains mutant for TspO. These and many other ob-
servations strengthen the likely relationship between
the non-sulfur purple bacteria and the ‘early’ mito-
chondrial endosymbiont (Yang et al. 1985). Yeliseev2

suggested that the mode of TspO action is to ‘regulate’
the efflux of intermediates in porphyrin biosynthesis.
Yeliseev2 (Yeliseev and Kaplan 2000) suggested that a
critical porphyrin intermediate(s) acts as a coactivator
of the antirepressor, AppA, which in turn regulates the
functional state of the PpsR repressor. Recently, X.
Zeng2 (Zeng and Kaplan 2001) has shown that TspO
regulates PS gene expression through the PpsR/AppA
regulon (Figure 5B).

J.P. O’Gara2 and J.M. Eraso2 and later J.-L. Oh2

(Oh and Kaplan 1999, 2000, 2001) concluded that the
cbb3-generated inhibitory signal continues to act as a
‘brake’ on PS gene expression under photosynthetic
conditions, i.e., there is electron flow through the cbb3
terminal oxidase, anaerobically. This fits nicely with
the observation of N.J. Mouncey2 that FnrL is active
under conditions of low O2 as well as anaerobically,
in stimulating cco operon transcription (Mouncey and
Kaplan 1998a–c).

J.-L. Oh2 (Oh and Kaplan 2001) made a series
of mutant strains whereby different segments of the
branched aerobic electron transport chain (ETC) could
be isolated and studied. These studies, together with
the use of specific electron transport chain (ETC) in-
hibitors in wild-type, enabled Oh to conclude that it is
the volume of electron flow through the cbb3 terminal
oxidase which generates an inhibitory signal dampen-
ing the kinase activity of PrrB (Figure 5A). Oh et
al. (2001) further demonstrated that the default state
for the PrrB histidine kinase is in the kinase positive
mode.

J.-L. Oh showed that removal of His407, which is
involved in binding the low spin heme of the catalytic
N subunit gave rise to an altered cbb3 resulting in the
‘turn on’ of PS gene expression in the presence of high
oxygen (Figure 5A). Unlike the other His substitutions
within the cbb3 oxidase, which also ‘turn on’ PS gene
expression, this strain had substantial residual oxidase
activity and normal levels of subunit proteins in the
membrane, as well as a normal carotenoid profile. This
phenotype resembles the phenotype of an in frame de-
letion of the Q gene of the ccoNOQP operon (Oh and
Kaplan 1999, 2001).

A study by J.-H. Roh2 (Roh and Kaplan 2000)
suggested that the RdxB polypeptide is involved in
shunting electrons from cbb3 to a hypothetical (or-
ganic) electron acceptor, which is involved in SE/SO
synthesis (see below). We also concluded, as sug-
gested for R. capsulatus and Sinorhizobium, that the
corresponding fix genes (Preisig et al. 1996, fixHIS)
are involved in assembly of the cbb3 oxidase (Koch et
al. 1998), i.e., ccoHIS.

We assume, and the data of A. Yeliseev2 (Yeliseev
and Kaplan 1999, 2000) support the idea, that an
‘organic’ donor is the source of the 2-OXO group dur-
ing the conversion of SE to SO by the CrtA protein.
Therefore, electron flow and factors that influence
this flow through the cbb3 under anaerobic conditions
will reduce the 2-OXO donor (X=O) to a hypothetical
hydroxyl form [X-OH]. We speculate that the RdxB
protein is involved in this reaction by taking elec-
trons from the cbb3 to the CrtA-catalyzed reaction
sequence. Continued electron flow occurring through
the cbb3 terminal oxidase, under anaerobic conditions,
implies that aerobic respiration immediately becomes
the dominant energy mode when cells are returned to
air, even in the presence of a fully functional ICM be-
cause electrons are ‘drained’ from the bc1 complex to
the cbb3 terminal oxidase to O2.

Synthesis

We have devised a general model (Oh et al. 2000;
Oh and Kaplan 2000, 2001) whereby the two major
regulatory pathways, repressor/antirepressor, and two
component activation systems are sensitive to redox
control by monitoring the different ends of the ETC
(Figure 5). PpsR/AppA senses the redox state of the
quinone pool through, we suggest, AppA, which is
both sensitive to oxygen levels and, when anaerobic,
to light intensity. This also explains the dominance
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of oxygen control to light regulation. The Prr sys-
tem is sensitive to the flow of reductant through the
cbb3 terminal oxidase, which determines the relative
activity of PrrB and ultimately the activation of PrrA.
However, PrrA is also likely to be phosphorylated by
other heterologous histidine kinases (Gomelsky and
Kaplan 1995c) such that the photosynthetic ‘lifestyle’
is fully integrated into the totality of cellular activity.
Whereas PpsR is primarily involved in regulating pig-
ment and puc genes, PrrA is involved in regulating
virtually all PS genes. FnrL regulates hemA (the first
gene in tetrapyrrole synthesis), hemN, and hemZ (en-
coding isoenzymic forms of coproporphyrinogen III
oxidase) and bchE (and presumably the entire operon
of which this is the first gene). In the absence of FnrL,
the BChl-biosynthetic pathway is effectively off, al-
though the apoproteins of the spectral complexes can
be made at low levels. These nascent apoproteins find
their way into the cell membrane, but as A.R. Varga2

(Varga and Kaplan 1993, 1995) has shown, they are
rapidly broken down. However, when a cco mutation
is combined with an fnrL mutation, cells regain the
ability to grow photosynthetically, i.e., the cbb3 defect
suppresses the loss of FnrL. The question is: how?
We concluded that PrrA and FnrL must act together at
those sites where FnrL is involved in activating tran-
scription and the presence of unusually high levels
of activated PrrA (due to the absence of cbb3) must
permit optimal binding of RNA polymerase in the ab-
sence of FnrL (Oh et al. 2000). Mechanistically, these
data suggests interactions between RNA polymerase,
FnrL, and activated PrrA.

FnrL regulates the expression of the ccoNOQP and
rdxBHIS operons and thereby controls the strength of
the inhibitory signal originating from cbb3. In addition
to this autoregulatory cycle involving PrrA and FnrL,
PrrA also regulates the expression of PrrB, which in
turn activates PrrA (Oh et al. 2002). Thus, the sys-
tem is dynamically tuned to respond to any and all
signals, which are ultimately translatable into active
redox flow.

By controlling the intracellular levels of (a) critical
porphyrin(s), TspO partially regulates AppA activity,
which senses the redox state of the quinone pool, as
described above. As the repressor loses activity (AppA
becomes more active) as the result of anaerobiosis and
decreasing light intensity, pigment synthesis acceler-
ates, but the presence of TspO insures the continued
efflux of porphyrin intermediates, which modulates or
fine-tunes the functional state of AppA; i.e., AppA be-
comes less functional, resulting in increased repressor

activity, keeping pigment production in check. Again,
the regulatory system becomes infinitely responsive to
changing growth conditions by being able to assess
redox state of the quinone pool, as well as the extent
of porphyrin accumulation.

The real world

When cells undergo a transition from aerobic to an-
aerobic conditions, the flow of reductant through the
aa3 and cbb3 terminal oxidases decreases, the strength
of the inhibitory signal affecting PrrB, as generated
via electron flow through the cbb3, diminishes, and
PrrB becomes more active in activating PrrA, which
is now able to activate PS gene expression. FnrL be-
comes active as oxygen tensions decline and together
with a gradual decline in PpsR strength, due to the
activation of AppA, as the result of the quinone pool
becoming more reduced, pigment synthesis is gradu-
ally turned on. However, under limiting levels of
pigment, the spectral complex assembly systems re-
flect the hierarchy of BChl insertion into the RC and
B875 complexes followed by the B800–850 (Sockett
et al. 1989; Gong et al. 1994; Gong and Kaplan 1996)
and because of the continuing presence of oxygen, sig-
nificantly more SO relative to SE is produced. The net
effect is to post-transcriptionally dampen the assembly
of the B800–850 relative to the RC and B875, thereby
diverting BChl into the RC and B875 complex. Since
the puf and puhA operon expression is relatively in-
dependent of PpsR/AppA, activated PrrA can result
in strongly increased levels of the apoproteins com-
prising the RC and B875. Now, the system is poised
for full-scale ICM development, once oxygen disap-
pears. Counter-balancing these trends is the increased
activity of FnrL in derepressing transcription of the
ccoNOQP operon, giving rise to increased levels of
cbb3. This, in turn, because of its very high affinity
for oxygen, can accelerate electron flow through the
cbb3, thereby countering the increased kinase activity
of PrrB by increasing the strength of the inhibitory
signal. The net effect is to dampen PrrA PS gene
activation and only gradually turn on PS gene expres-
sion, especially the apoproteins for the B875 and RC.
Likewise, the presence of TspO (increased synthesis
as oxygen declines) serves to lower the intracellular
concentration of the porphyrin intermediate(s) which
serves as a coactivator of AppA, resulting in an in-
crease in PpsR strength, thereby slowing the rate of
pigment production. The continued presence of O2
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mitigates full FnrL activation and the bchE operon is
not fully derepressed. Thus, the turn on of PS genes
at low oxygen tensions is held in check by regulatory
elements and effector molecules such that ‘turn on’ is
slowed. If high levels of oxygen are reintroduced, the
cell is well able to reverse direction.

If the levels of oxygen continue to fall to zero,
the ‘brakes’ on the PpsR/AppA and Prr systems are
eliminated, and the system is ready to develop optim-
ally and robustly. The Prr system remains respons-
ive to minimal levels of electron flow through the
cbb3. Light intensity, by determining the redox state
of the quinone pool, is reflected in the activity of
the PpsR/AppA system, which is now the domin-
ant controlling element. In the absence of oxygen,
the role of FnrL is optimized and now pigment gene
expression and puc operon expression are more re-
sponsive to changes in the strength of the PpsR/AppA
repressor/antirepressor system, which is under light
control. As light intensity drops, the quinone pool
becomes more reduced and AppA is more active, res-
ulting in diminished PpsR activity and increased puc
and pigment gene expression. Likewise, an increase in
the reduced state of the quinone pool increases elec-
tron flow to the cbb3, although minimal relative to
aerobic growth. It nevertheless serves to maintain the
presumptive 2-OXO donor (X=O) in the reduced state
(X-OH), which increases the relative levels of SE to
SO, insuring assembly of the B800–850 complex and
an increase in the size of the variable photosynthetic
unit (VPU). Extensive data indicate that the apopro-
teins can be and are synthesized in great excess relative
to the levels of pigment ultimately available for spec-
tral complex formation (Varga and Kaplan 1995). This
means that there is likely to be no free pigment, which
could result in irreparable harm to the cell. It also
means that, under anaerobic conditions, it is the levels
of pigments, regulated by light intensity, which ul-
timately set the final cellular levels of the spectral
complexes. At higher light intensities, the quinone
pool is relatively more oxidized, resulting in dimin-
ished AppA activity and increased PpsR activity, and
diminished pigment and puc operon expression. Like-
wise, at high light, there is lowered electron flow to
the cbb3 and increased SO synthesis relative to SE,
together resulting in a decrease in the size of the VPU
(variable photosynthetic unit). However, by default,
the decreased expression of the puc operon leads to
relatively increased expression of puf and puhA, fur-
ther increasing the size of the fixed photosynthetic unit
(FPU). Such a scenario also describes why the action

spectrum for PS gene expression follows the absorb-
ance profile of the spectral complexes, since these
describe the redox state of the quinone pool except
when the redox state of the quinone pool is affected
by other factors, e.g. DMSO reductase activity.

Upon re-introduction of oxygen and despite the
presence of a fully functional ICM, the presence of a
pre-existing, functional cbb3 terminal oxidase insures
that aerobic electron flow will prevail and cyclic elec-
tron flow will cease. FnrL will become nonfunctional
turning down the pathway of porphyrin synthesis, as
well as the bchE operon and ccoNOQP transcription.
The quinone pool becomes highly oxidized, making
its redox state independent of light intensity, since
the cbb3 is the major conduit for electron flow until
significant levels of the aa3 accumulate. As a result,
AppA becomes non-functional and PpsR is restored to
full functionality, just as the Prr system becomes non-
functional, the PS genes are turned off. This shut down
is virtually immediate; i.e., there is no ‘brake’ which
restricts this shutdown. The synthesis of the aa3 oxi-
dase resumes and with more membrane surface area
per cell (old ICM), we suggest that the aa3 rapidly
becomes the predominant terminal oxidase.

It ain’t over ’till

Where do we go from here? Together with the on-
going protein, physiological, genetic and molecular
analyses, we can now add the complete genome se-
quence of R. sphaeroides 2.4.1. There is obviously
much that is still missing, as well as alterations which
will be introduced to the overall model, but researchers
now stand poised with a fuller armament of ideas and
methodologies in order to fully understand photosyn-
thesis and photosynthesis gene expression within the
context of an entirely free-living organism, and how
these contribute to the lifestyle of R. sphaeroides.
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