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Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential 
to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that 
are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. 
These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotec-
tion and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of 
photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to 
quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results 
obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to 
improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include 
remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.

Keywords  C4 rice · Improving photosynthesis and crop yield · Leaf and crop models · Photorespiration bypasses · 
Photosynthesis models · Synthetic biology

Abbreviations
Ci, Cm, Cc	� Intercellular, mesophyll, or chloroplast 

CO2 concentration
CAM	� Crassulacean acid metabolism, a pathway 

of CO2 assimilation

CBB cycle	� Calvin-Benson-Bassham cycle of CO2 
assimilation

CCM	� CO2 concentrating mechanism
CET	� Cyclic electron transport
Chl	� Chlorophyll
Cyt	� Cytochrome
ΔΨ	� Electric potential difference across the 

thylakoid membrane
ΔpH	� pH difference across the thylakoid 

membrane
ETR	� Electron transport rate
Fe-S	� Rieske iron sulfur protein, an electron 

carrier
Fd	� Ferredoxin, an electron carrier
FNR	� Ferredoxin-NADP+ oxidoreductase
LHCI, LHCII	� Light-harvesting complexes in PSI and 

PSII antenna
NADP+	� Oxidized form of nicotinamide adenine 

dinucleotide phosphate, an electron 
carrier

NDH	� NADH dehydrogenase-like complex 
involved in antimycin A insensitive cyclic 
electron transport
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NPQ	� Nonphotochemical quenching of the 
excited state of chlorophyll

OEC	� Oxygen evolving complex of PSII
P680, P700	� The primary electron donor of PSII and 

of PSI, respectively
PGR5/PGRL1	� A complex containing Proton Gradient 

Regulation 5 and Proton Gradient Regu-
lation Like 1 proteins involved in antimy-
cin A sensitive cyclic electron transport

pmf	� Proton motive force
PN	� The net photosynthetic rate
PQ and PQH2	� Plastoquinone and its reduced form, 

plastoquinol
PSI, PSII	� Photosystem I and II
PTOX	� Plastid terminal oxidase, involved in 

chlororespiration
QA, QB	� First and second plastoquinone electron 

acceptors of PSII
Rac	� Rubisco activase
ROS	� Reactive oxygen species
Rubisco	� Ribulose-1,5-bisphosphate carboxylase/

oxygenase
SIF	� Solar induced fluorescence
TM	� Thylakoid membrane
WWC​	� Water-water cycle

Introduction: improving the efficiency 
of photosynthesis for a better crop yield

In oxygenic photosynthesis, plants capture light energy from 
the sun and produce sugars and organic biomass from CO2 
and water, releasing molecular oxygen into the atmosphere 
as a byproduct (Blankenship 2021; Björn et al. 2023). This 
process has had a fundamental role in shaping the history 
of Earth, by contributing to the rise of atmospheric O2 and 
the evolution of animals (Sánchez-Baracaldo and Cardona 
2020). It was and is the source of our food, fiber, biofuel, 
and many other useful substances. As the human popula-
tion is expected to reach 10.87 billion by 2100, much more 
primary foodstuff would be needed to feed us all. It has been 
estimated that the production of the current major field crops 
such as wheat, rice, maize, and soybean, which provide 
about two thirds of calories consumed globally, must dou-
ble by 2050 (see e.g., Long and Ort 2010; Long et al. 2015). 
Since a corresponding expansion of the available cultivable 
land is not sustainable (Muhie 2022), it is necessary to find 
ways to increase the crop yields. Moreover, the ongoing 
climate change has diminished the crop productivity in the 
last 25 years, which also highlights the necessity of having 
higher crop yields in the future (Long 2012; Ray et al. 2012, 
2013; Arora 2019). Yet, the progress in disease protection 
and fertilization, as well as the classical breeding measures 

taken to improve production during the green revolution in 
the late twentieth century (such as dwarfing; see Peng et al. 
1999; Parry et al. 2011), cannot continue at present to lead 
alone to sufficient advancement in the crop yield (Evans 
and Fischer 1999; Sinclair et al. 2004; Sharma-Natu and 
Ghildiya 2005; Long et al. 2015; Furbank et al. 2020).

Furthermore, theoretical considerations show that the effi-
ciency (ε) of light conversion to biomass is ~ 0.03 at the best 
in plants, which is only one-third of the theoretical maximum 
of ~ 0.09, while under the field conditions it is even lower 
(Zhu et al. 2004a, 2008, 2010). Since improvement in pho-
tosynthesis (i.e., with a higher ε) was not addressed during 
the green revolution (Gifford and Evans 1981; Koester et al. 
2016), the enhancement of photosynthesis is now consid-
ered an important target to increase crop productivity, as any 
increases in the net photosynthesis rate of individual plants 
may lead to increases in biomass across the entire growing 
season and crop canopy (Long et al. 2006; Zhu et al. 2010; 
Evans 2013; Long 2014; Ort et al. 2015). Experimental evi-
dence supporting this point of view has been obtained in 
field experiments using the free-air CO2 enrichment (FACE) 
method, in which higher biomass and yield was achieved in 
plants grown under elevated CO2 (Ainsworth et al. 2004; 
Long et al. 2006; Kang et al. 2021; Ainsworth and Long 
2021), as well as in studies in which the rate of photosyn-
thesis was enhanced through genetic engineering (e.g., 
Kromdijk et al. 2016; Köhler et al. 2017; Lopez-Calcagno 
et al. 2020; De Souza et al. 2022). A variety of possible 
ways to improve photosynthesis have been suggested and 
reviewed, in which both advanced non-transgenic phenomics 
approaches and transgenic technologies are expected to play 
a major role (e.g., Long et al. 2006, 2015; Ort et al. 2015; 
Yin and Struik 2015; Foyer et al. 2017; Dann and Leister 
2017; Wu et al. 2019; Muhie 2022; Zhu et al. 2010, 2022; 
Walter and Kromdijk 2022; Yin et al. 2022). These include: 
(i) enhancing light capture; (ii) optimizing the photosyn-
thetic electron transport to increase NADPH and ATP pro-
duction; (iii) optimizing the photoprotection mechanisms; 
(iv) increasing photosynthesis induction under fluctuating 
light; (v) reducing photorespiration losses; (vi) boosting the 
enzymatic activity in the Calvin-Benson-Bassham (CBB) 
cycle; (vii) improving the flow of CO2 through the leaf, or 
introducing CO2 concentrating mechanisms around Rubisco 
from algae and cyanobacteria in C3 plants; (viii) optimiz-
ing the resource investment among the components of the 
photosynthetic apparatus to maximize carbon gain; and (ix) 
engineering C4 or intermediary pathways in C3 grain crops, 
such as rice or wheat. Together, the above modifications are 
expected to double the yield potential of the major crops 
(Zhu et al. 2010). Although there are encouraging results 
from some of the above methods, in a number of model spe-
cies under field conditions (see e.g., Kromdijk et al. 2016; 
South et al. 2019; Cavanagh et al. 2022), other methods 
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(e.g., viii and ix) are long term projects. We emphasize 
that many of the above options to enhance plant productiv-
ity require modelling to guide the necessary changes via 
in-silico-assisted bioengineering (Long et al. 2015), or to 
provide information on the genes that would enhance crop 
photosynthesis (Yin et al. 2022). In view of the above, we 
highlight, in this review, several significant modelling stud-
ies aiming to find solutions for crop yield improvement and 
include the importance of solar-induced fluorescence (SIF) 
measurements towards this goal. We begin by providing an 
overview on the basics of photosynthesis and on modeling 
oxygenic photosynthesis with the goal of improving plant 
productivity.

Basic information on oxygenic 
photosynthesis and its modelling

Oxygenic photosynthesis: a background

It is well known that oxygenic photosynthesis is one of 
the most studied biological processes (Blankenship and 
Govindjee 2007; Braun 2020; Stirbet et al. 2020; Shevela 
et al. 2019, 2023), providing a great advantage for its mod-
elling. During the initial light phase, taking place in the 
thylakoids (the specialized membrane system in the chlo-
roplast), light energy is harvested by both photosystem 
(PS) I and PSII antenna, and transferred to their respective 
reaction centers, where photochemical reactions take place 
(Sauer 1975, 1979; Mirkovic et al. 2017). This process 
initiates electron transfer from water to NADP+ in a linear 
chain of electron carriers (Pushkar et al. 2008; Govindjee 
et al. 2017), leading as well to cyclic and pseudo cyclic 
electron transport, in addition to the formation of NADPH 
and ATP, the major event. In the second phase of oxy-
genic photosynthesis in C3 species, taking place in the 
chloroplast stroma, the Calvin-Benson-Bassham (CBB) 
cycle, the C3 cycle, is the central part of the overall car-
bon metabolism (Fig. 1), which uses the reducing power 
of NADPH and the energy from ATP, both produced by 
the light reactions, to do the job. The CBB cycle involves 
11 enzymes that catalyze 13 reactions, where ribulose 
1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the 
key enzyme (for its discovery, see Sharkey 2023). It is 
involved in the fixation of CO2 (carboxylation) on ribu-
lose 1,5-bisphosphate (RuBP), a five-carbon compound 
producing two molecules of 3-phosphoglycerate (3PG), 
which are used for biosynthetic reactions and the recy-
cling of RuBP (Fig. 1). The necessary light activation of 
this process is achieved by covalent redox-modification of 
some key enzymes that are inactive in the dark. For a his-
torical background of the CBB cycle, see Calvin (1989), 
Benson (2002), Bassham (2003), Nonomura et al. (2017), 

Sharkey (2019), and for mathematical models of the C3 
photosynthesis see e.g., Farquhar et al. (1980), Poolman 
et al. (2000), Laisk et al. (2006), Zhu et al. (2007, 2013), 
Jablonsky et al. (2011), Morales et al. (2018a, b) and Bel-
lasio (2019).

We emphasize here that Rubisco is not very discrim-
inating with respect to CO2 and O2 (see e.g., Farquhar 
et al. 1980; Zhu et al. 2008), since it also catalyzes, as a 
side-reaction, the fixation of molecular O2 on RuBP, which 
leads to the formation of one molecule of 3-phosphoglyc-
erate (3PG), and one molecule of 2-phosphoglycolate 
(2PG). The 2PG is then converted to glycolate (Ogren and 
Bowes 1971; Bauwe 2023), which can inhibit at least three 
enzymes of the CBB cycle, and, thus, it must be quickly 
removed. The glycolate is detoxified through a com-
plex photorespiration cycle, also known as the C2 cycle 
(Hodges et al. 2016; Busch 2020), involving reactions tak-
ing place in chloroplasts, mitochondria, peroxisomes, and 
the cytosol. The rate of photorespiration depends on the 
reaction kinetics of Rubisco and the atmospheric condi-
tions: the oxygenation decreases as the [CO2] increases, 
and the specificity of Rubisco for CO2 relative to O2 
decreases as the temperatures increase, thus increasing 

Fig. 1   A diagram of the Calvin–Benson–Bassham (CBB) cycle for 
carbon assimilation (CO2 fixation) in oxygenic photosynthesis. The 
three stages of the CBB cycle are: (i) Carboxylation the enzyme 
Rubisco catalyzes the incorporation of CO2 into RuBP (ribulose 
1,5-bisphosphate), a molecule with five carbon atoms, resulting in the 
formation of two molecules of 3-phosphoglicerate (3PG), each with 
three atoms of carbon; (ii) Reduction NADPH (together with ATP) 
are used to reduce the 3PG molecules to glyceraldehyde 3-phosphate 
(GAP), which is used for the biosynthesis of starch and sugars; and 
(3) Regeneration ribulose bis phosphate (RuBP), the molecule that 
starts the cycle, is regenerated, in several steps, by using ATP, so that 
the cycle can continue. Modified from Shevela and Govindjee (2016)
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the rates of oxygenation. Due to photorespiration, 75% 
of the carbon in 2PG is recycled, and can reenter the C3 
cycle, but the efficiency of C3 photosynthesis decreases 
significantly, since the photorespiration requires additional 
ATP and NADPH (Walker et al. 2016).

Although the C3 pathway for carbon assimilation in 
plants is predominant on Earth, there are plants which use 
other metabolic pathways (Fig. 2): (i) C4, also known as 
the Hatch-Slack pathway (Hatch and Slack 1966); and (ii) 
the crassulacean acid metabolism (CAM). Note that C4 and 
CAM pathways are adaptations that have evolved indepen-
dently multiple times over the past 30 million years (see e.g., 
Sage et al. 2012; Schlüter and Weber 2020).

The C4 pathway leads to increased [CO2] at Rubisco, 
counteracting the effect of oxygen, and enhancing the car-
bon assimilation efficiency, which, together with improved 
nitrogen and water use efficiencies, leads to higher biomass 
production in several crops, such as sugarcane, sorghum, 
and maize. To achieve the above, C4 plants have developed 
a special anatomy (the so-called Kranz anatomy; e.g., Hatch 
and Osmond 1976; Fouracre 2014), where mesophyll and 
bundle sheath cells have different structures and functions 
(see Fig. 2). However, after 2000, C4 photosynthesis was 
shown to occur also in single mesophyll cells of a few plant 
species, due to their unique intracellular compartmentali-
zation, equivalent to that between mesophyll and bundle 
sheath cells in the Kranz anatomy (see reviews by Edwards 
et al. 2004; Sharpe and Offermann 2014). The C4 photo-
synthesis starts in the mesophyll cells, where the CO2 is 

converted into bicarbonate by carbonic anhydrase, and then 
the latter is ‘fixed’ on phosphoenolpyruvate (PEP, a three-
carbon compound) by PEP carboxylase (PEPC), producing 
oxaloacetate (OAA, a four-carbon compound), which is 
then converted into malate (also a four-carbon compound) 
by malate dehydrogenase. Then, the malate is transported to 
the bundle sheath cells, where it is decarboxylated to release 
CO2, which is used by the CBB cycle in the chloroplasts of 
the bundle sheath cells. The remaining pyruvate is translo-
cated back to the mesophyll cells and reconverted to PEP, 
using ATP. For mathematical models of C4 photosynthesis 
see e.g., Laisk and Edwards (2000), von Caemmerer and 
Furbank (2003), Zhu et al. (2008), Bellasio (2016), Wang 
et al. (2014a,b; 2021), von Caemmerer (2021). Based on the 
enzymes used to decarboxylate the C4 acids in the bundle 
sheath cells, the C4 plants are of the following subtypes: 
(i) NADP-malic enzyme (ME) (e.g., in: maize, sorghum, 
sugarcane, and millet); (ii) NAD-ME (e.g., in: Atriplex 
rosea, Panicum milioides, and Portulaca oleracea): and 
(iii) phosphoenolpyruvate carboxykinase (PEP-CK) (e.g., 
in the guinea grass Megathyrsus maximus). However, by 
using a modelling analysis, Wang et al. (2014a) have con-
cluded that only the NADP-ME and NAD-ME should be 
considered separate C4 subtypes, as they both intrinsically 
involve a supplementary PEP-CK cycle. On the other hand, 
the optimal energetic requirements of 80% energy allocation 
in the bundle sheath cells and 20% in the mesophyll cells, 
which was determined in their theoretical analysis, cannot 
be fulfilled in a pure PEP-CK type plant, because, in the 
Kranz anatomy, the bundle sheath cells are shaded by the 
mesophyll cells.

Further, the CAM pathway is a special metabolism used 
by plants, such as the succulent ones that grow in extremely 
arid environments. These plants separate the photosynthetic 
function in time, in order to conserve water and fix CO2 
at high concentrations, without photorespiration (Winter 
and Smith 2022). This is done in the following manner (see 
Fig. 2): (i) when the stomata are open at night (i.e., when it is 
cooler), CO2 is fixed on PEP, using PEP carboxylase, and the 
resulting oxaloacetate is converted to malate, which is stored 
in the vacuoles of the mesophyll cells; and (ii) when the sto-
mata are closed during the day (i.e., when the temperature 
is high), the malate from the vacuoles is transported into 
the mesophyll chloroplasts and, there, it is decarboxylated 
releasing CO2 which then feeds into the CBB cycle, while 
the remaining pyruvate is converted back to PEP. For models 
of CAM photosynthesis, see e.g., Cheung et al. (2014) and a 
review by Burgos et al. (2022).

Fig. 2   Schematic illustration of C3, C4, and the crassulacean acid 
metabolism (CAM) pathways of photosynthesis in plants. C4, malate, 
a four-carbon compound that releases CO2 after decarboxylation; 
CBB cycle, Calvin-Benson-Bassham cycle of carbon assimilation 
(see Fig.  1); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxyge-
nase; 3PG, 3-phosphoglycerate; BPG, 1,3-bisphosphoglycerate; GAP, 
glyceraldehyde 3-phosphate; RuMP, ribulose 5-phosphate; RuBP, 
ribulose 1,5-bisphosphate. Modified from https//ib.bioninja.com.
au/higher-level/topic-8-metabolism-cell/untitled-2/c3-c4-and-cam-
plants.html
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Background on mathematical modelling of oxygenic 
photosynthesis

Models of oxygenic photosynthesis can be classified into 
empirical, mechanistic, quasi-mechanistic, as well as steady-
state or dynamic, depending on the assumptions made, 
their formulation, and applications. There is a great deal 
of diversity among the models as they describe the entire 
photosynthetic process in different ways, but they can be 
also incomplete, depicting either the light or the carbon reac-
tions (or parts of these), depending on the research question 
raised, as well as the available data. The very early models 
related to carbon assimilation were empirical (e.g., Maskell 
1928), being based on the relationship between the net pho-
tosynthesis rate (PN) and the environmental variables such 
as light intensity (I), temperature (T), and CO2 concentra-
tion (Ci or Cc, i.e., the intercellular CO2 concentration, or 
that in chloroplasts). This method has been used by many 
researchers, with numerous variations, and consists of an 
algebraic function containing several parameters, which is 
relatively simple and easy to use to fit the experimental data, 
but without the description of the physiological processes of 
photosynthesis (see e.g., Smith 1936; Jassby and Platt 1976; 
Eilers and Peeters 1988; Ye 2007). However, when such an 
empirical model is combined with a steady-state mechanistic 
model of photosynthesis, which links biochemical properties 
of the leaves to gas exchange measurements (see e.g., Farqu-
har et al. 1980), the newer unified model can indeed provide 
information on key photosynthetic parameters ‘capturing’ 
the underlying physiological processes of photosynthesis. 
For different protocols, proposed for fitting the dependence 
of photosynthesis or the electron transport rate (ETR, noted 
also as flux J) on environmental variables by using such a 
combined model, see e.g. (1) Ögren and Evans (1993), von 
Caemmerer (2000), Johnson and Murchie (2011), Ye et al. 
(2013a,b; 2020; 2024), and Herrmann et al. (2020) for net 
photosynthesis-light response curves, (PN/I) and (J/I); (2) 
Long and Bernacchi (2003), Sharkey et al. (2007), Dubois 
et al. 2007, Miao et al. (2009), and Gu et al. (2010) for net 
photosynthesis-intercellular CO2 response curves (PN/Ci); 
and (3) Medlyn et al. (2002), Hikosaka et al. (2006) and 
Adams et al. (2017) for net photosynthesis-temperature 
response curves (PN/T). We note that the PN/I curves are 
characteristic for the photosynthetic phenotype of plants, 
and a combined model (as those mentioned above) gives 
information on the quantum yield, the maximum photosyn-
thetic capacity, the leaf radiation use efficiency, and the light 
compensation point (Johnson and Murchie 2011). The PN/
Ci curves, as determined from gas exchange measurements, 
have been successfully used to evaluate the parameters 
defined by the Farquhar et al. (1980) model, or its variants 
(Yin et al. 2009). Since these models are commonly used 
to estimate the CO2 assimilation from the leaf to the global 

scale (Yin and Struik 2009; Bernacchi et al. 2013; Rogers 
et al. 2017; Wu et al. 2016, 2019), quantitative evaluation 
of their parameters is necessary for the estimation of crop 
and ecosystem productivity, and together with the results 
obtained from the PN/T curves, they are essential for the 
evaluation of climate change impact on the entire system 
(von Caemmerer 2013, 2021).

However, the mechanistic photosynthetic models (steady-
state or dynamic) are based on biochemical and biophysical 
principles that describe the reactions and pathways of photo-
synthesis. Although they are more realistic and explanatory, 
they require many more parameters as well as data to be 
calibrated and validated (see e.g., Antal et al. 2013). Mecha-
nistic steady-state models, as those just described above, 
assume that the photosynthetic reactions are in equilibrium, 
i.e., the concentrations of intermediates do not change over 
time, and thus they consist of a set of algebraic equations 
containing parameters characterizing the photosynthetic sys-
tem. The steady-state model of C3 photosynthesis, proposed 
by Graham Farquhar, Susanne von Caemmerer and Joseph 
Berry (Farquhar et al. 1980), often referred to as the FvCB 
model, is one of the most widely used models in plant sci-
ence. This model consists of a small number of algebraic 
equations describing the steady-state CO2 exchange in C3 
leaves—that relates the biochemistry of CO2 assimilation 
to gas exchange—and accounts for the limitations imposed 
by Rubisco activity, electron transport capacity, and CO2 
diffusion, within the leaf. The FvCB model has now many 
improved variants with additions such as: (1) temperature 
dependence of CO2 assimilation from the chloroplast to the 
ecosystem level (Bernacchi et al. 2001, 2002, 2013), and 
the mesophyll conductance process (Moore et al. 2021); (2) 
adjustments for C4 photosynthesis (von Caemmerer and 
Furbank 2003; Wang et al. 2014a,b; von Caemmerer 2021), 
or for C3-C4 photosynthesis (von Caemmerer 2000; Bel-
lasio 2016); (3) inclusion of alternative electron transport 
pathways (Yin et al. 2004); (4) generalization of a meso-
phyll resistance model for different intracellular arrange-
ments of chloroplasts and mitochondria (Yin and Struik 
2017); and (5) inclusion of possible effects of cyanobac-
terial bicarbonate transporters at the chloroplast envelope 
(Price et al. 2011). The above-cited steady-state models of 
photosynthesis are simple, easy to use for the analysis of 
experimental data, and for the exploration of different ways 
to improve photosynthesis, such as optimizing the distribu-
tion of resources between different enzymes of the carbon 
metabolism, redirecting photorespiratory CO2 to imple-
ment bicarbonate pumps in C3 chloroplasts, or to insert C4, 
CAM or intermediate C3–C4 forms of photosynthesis into 
C3 plants, and for exploring potential benefits of engineer-
ing different photosynthetic traits into crops (for additional 
applications, see reviews by von Caemmerer 2000, 2013; 
Yin et al. 2021).
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When investigating the response of photosynthesis to 
rapid variations of different environmental variables, mecha-
nistic dynamic models are much more appropriate than the 
steady-state photosynthesis model, since the photosynthetic 
processes in this case are continuously adjusted to match 
the various changes of the environment (Kaiser et al. 2015). 
Dynamic models are usually based on the use of ordinary 
differential equation systems describing the kinetics of the 
reactions involved in photosynthesis, such as electron trans-
port and carbon fixation, but they can be also based on sto-
chastic or probabilistic methods, or contain related elements.

Many available models of photosynthesis have focused on 
the kinetics of the underlying processes related to the induc-
tion of photosynthesis during transition from the dark to the 
light, such as Chl fluorescence induction; for the relation 
between the Chl fluorescence and photosynthesis, see Papa-
georgiou and Govindjee (2004), Kalaji et al. (2016, 2017, 
2018), Brestic and Allakhverdiev (2022), and Stirbet et al. 
(2019). There are models of Chl fluorescence induction that 
do not consider the carbon assimilation reactions (e.g., Stir-
bet and Strasser 1996; Stirbet et al. 1998; Lazár 2003, 2009, 
2013; Tomek et al. 2003; Sušila et al. 2004; Lazár et al. 
2005a; Zhu et al. 2005; Guo and Tan 2011, 2014; Ebenhöh 
et al. 2014; Belyaeva et al. 2019; Riznichenko and Rubin 
2021), or those which include both the light and carbon 
assimilation reactions and other related metabolic reactions 
(e.g., Laisk et al. 2006, 2009a; Zhu et al. 2013); see reviews 
by Stirbet et al. (2014, 2020), and a book on photosynthesis 
in silico (Laisk et al. 2009b). On the other hand, minimized 
models of photosynthesis have been used by Morales et al. 
(2018a) and Bellasio (2019) to analyze the photosynthetic 
electron transport regulation and to simulate experimental 
data measured with different methods, or by Fu et al. (2020) 
to verify a feedback control framework for regulating pho-
tosynthetic activities. The effects of natural fluctuating light 
on the rate of photosynthesis have been also analyzed (see 
e.g., Way and Pearcy 2012; Morales et al. 2018b; Slattery 
et al. 2018); for reviews, see Morales and Kaiser 2020; Long 
et al. 2022), as well as artificial fluctuating light (e.g., Lazár 
et al. 2022a). In the latter case, multiple factors influence 
the rate of photosynthesis, such as changes in stomatal and 
mesophyll conductance, NPQ relaxation, Rubisco activation/
de-activation, activation of RuBP regeneration enzymes, 
and metabolite pool sizes; further, the relative importance 
of these factors varies with the species of the plant or of the 
algae (e.g., Taylor and Long 2017; De Souza et al. 2022). 
On the other hand, simultaneous changes of several other 
environmental factors (e.g., variations in leaf temperature, 
leaf-to-air vapor pressure deficit VPDleaf-air, and atmospheric 
[CO2]) also induce perturbations in plants (Kaiser et al. 
2017), which cause e.g., changes in Ci (Peak and Mott 2011), 
and thus in the rate of carbon assimilation and the crop yield 
(Taylor and Long 2017; Wang et al. 2021).

Furthermore, dynamic models of photosynthesis have 
been used to verify hypotheses regarding spontaneous 
oscillations in photosynthesis (e.g., Laisk and Walker 1986; 
Laisk et al. 1991; Lazár et al. 2005b; see a review by Walker 
1992), and to calculate the flux control coefficient (CC) of 
enzymes for CO2 uptake rate (Poolman et al. 2000), as well 
as to identify targets to enhance photosynthesis (Poolman 
1999; Zhu et al. 2007; Wang et al. 2021; see also Zhu et al. 
2010). In addition, we note that for the quantitative under-
standing of complex metabolic pathways, related to carbon 
assimilation reactions, with the goal of altering the distribu-
tion of metabolic flux or of designing metabolic pathways 
for new products, mathematical modelling of metabolism is 
definitely an important tool (Giersch 2000).

Finally, different multiscale crop models, having at their 
base available models of photosynthesis, are currently being 
developed, and these will be mentioned in the last section 
of this review: Crop models are imperative to improve crop 
yield.

Fine‑tuning the light phase 
of photosynthesis to obtain a greater crop 
yield

Several reviews have recently been published on how to opti-
mize/improve the light-dependent photosynthetic reactions 
to increase plant productivity (see e.g., Cardona et al. 2018; 
Murchie and Ruban 2020; Sukhova et al. 2021; Walter and 
Kromdijk 2022; Leister 2023; Wu et al. 2023). For this goal, 
the following aspects of the light-phase of photosynthesis 
need to be considered (see the blue stars in Fig. 3). The qual-
ity (i.e., the wavelengths) of the light absorbed by the photo-
systems has been shown to strongly influence the efficiency 
of photosynthesis (see e.g., Hamdani et al. 2019a; and a 
review by Lazár et al. 2022b). Moreover, since PSII and PSI 
work in series, any imbalance in their relative excitations 
will affect negatively on the photosynthetic process; how-
ever, there is regulation and re-equilibration through a com-
plex process known as the ‘state-transition’, in which a part 
of the PSII antenna (a mobile LHCII complex) is relocated 
from PSII to PSI, or the other way around, as a function 
of the redox state of the plastoquinone (PQ) pool (see e.g., 
Papageorgiou and Govindjee 2011; see blue star 1 in Fig. 3). 
Moreover, if the light already absorbed by PSII is in excess, 
the excited state can be quenched non-photochemically as 
heat (Demmig et al. 1987; Jahns and Holzwarth 2012; Papa-
georgiou and Govindjee 2014; see blue star 2 in Fig. 3). If 
the absorbed light is still in excess, it leads to the formation 
of reactive oxygen species (ROS), which can be, however, 
scavenged, in a complicated manner, by the water-water 
cycle (WWC; see Foyer 2018 and blue star 5 in Fig. 3). An 
important feature of photosynthetic electron transport in the 
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thylakoid membrane (TM) during the “light phase “of pho-
tosynthesis is that it is coupled to proton transport across the 
membrane, leading to acidification of the lumen (see e.g., 
Buchanan 1980). The low lumen pH, thus formed, not only 
initiates the NPQ, but it is also a part of the proton motive 
force (pmf) driving ATP synthesis (Mitchell 1975); in addi-
tion, it causes photosynthesis control at the level of Cyt b6/f 
(Wilson et al. 2021; Trinh and Masuda 2022; see blue star 3 
in Fig. 3). Cyclic electron transport (CET) around PSI (see 
blue star 4 in Fig. 3) also contribues to acidification of lumen 
(e.g., Kawashima et al. 2017). As the other part of pmf is the 
electric potential difference, caused by redistribution of ions 
between the two sides of the TM, i.e., the membrane poten-
tial, ΔΨ (see blue star 6 in Fig. 3), it is important to consider 
the partitioning of pmf into ΔΨ and ΔpH (see blue star 7 in 
Fig. 3). All the processes, namely the state transitions, the 
NPQ, the water-water cycle, the photosynthesis control, and 
the membrane potential have been mathematically modelled 
as described below.

The state transitions

As mentioned earlier, the state transitions take place to pro-
vide a balanced excitation between the two photosystems 
(Allen et al. 1981). PQ pool reduction by the PSII under 
excess light leads to the activation of a kinase (STN7 in 
plants; Stt7 in algae) that phosphorylates a fraction of the 
LHCII in the PSII antenna, which, in accord with the most 
popular view of this process (see a review by Rochaix 2014), 
moves in the TM towards PSI, and attaches to its antenna. 
In this way, a transition from the high fluorescence State 1 
to the low fluorescence State 2 takes place, since PSI has 
lower fluorescence yield than PSII. If this is followed by 
exposure to low light, the PQ pool is oxidized by the higher 
light absorption of PSI, which then inactivates the kinases, 
and the constitutively active PHP1/TAP38 phosphatase 
dephosphorylates the mobile LHCII complexes from PSI 
antenna, which then move back to PSII, leading to a State 2 
to State 1 transition. Fine tuning of the state transitions and 
of the rates of their adjustment/accommodation in fluctuat-
ing light might lead to a better light management and thus, 
potentially to higher plant productivity. Indeed, Negi et al. 
(2020) have bioengineered a mutant of C. reinhardtii which 
dynamically adjusts the size of its light harvesting antenna 
as a function of the growth light intensity; this mutant shows 
higher photosynthetic rates, and two to three-fold greater 
biomass productivity, while preserving the ability to induce 
state transitions and nonphotochemical quenching (NPQ) of 
the excited state of Chl a (Demmig et al. 1987; see Fig. 3).

The state transitions have been mathematically mod-
elled by Ebenhöh et al. (2014), and an essentially similar 
model was used by Stirbet and Govindjee (2016) for the 
same phenomenon. In both cases, the modelling involved 

the state transitions in the green alga Chlamydomonas 
reinhardtii, grown under low light, when the NPQ is only 
slightly involved. Ebenhöh et al. (2014) assessed the state-
transition by using Pulse Amplitude Modulation (PAM) 
fluorescence measurements and simulations of changes in 
the maximal ChlF (FM´) under very low as well as high light. 
On the other hand, Stirbet and Govindjee (2016) used Chl 
a fluorescence induction measurements under continuous 
illumination and confirmed in silico that under anaerobic 
conditions in the darkness, the PQ pool is reduced by chlo-
rorespiration using PTOX (the plastid terminal oxidase; see 
Fig. 3), which triggers a State 1 to State 2 transition. In the 
subsequent in silico illumination under aerobic conditions, 
a State 2 to State 1 transition occurs, causing a slow Chl a 
fluorescence rise from the S-step to a maximum M in the 
simulated slow Chl fluorescence induction curve [Note that 
the “step S” follows the usual OJIP phase of the Chl a fluo-
rescence transient, where P to S is a fluorescence decline due 
mostly to the ferredoxin-NADP+ oxidoreductase (FNR) acti-
vation and NPQ induction by lumen acidification, see e.g., 
Briantais et al. 1979]. Additionally, Stirbet and Govindjee 
(2016) analyzed, also in silico, how light intensity and dif-
ferent photosynthetic processes influence the degree of state 
transitions, and thus the relative amplitude of the simulated 
S-M increase.

The non‑photochemical quenching of the excited 
state of chlorophyll a

Similar to the state transition, a faster induction of the NPQ 
under excess light and a faster relaxation of NPQ under low 
light, might be a way for the plants and algae to better man-
age the light and thus to increase plant productivity. The so-
called fast NPQ (denoted as qE) is triggered by acidification 
of the lumen, which causes protonation of the PsbS protein 
and the activation of violaxanthin de-epoxidase (VDE); 
VDE converts violaxanthin to zeaxanthin via antheraxan-
thin. Further, protonated PsbS, and zeaxanthin are necessary 
for the induction of the NPQ in excess light (Jahns and Hol-
zwarth 2012). Under low light (or in darkness), zeaxanthin 
epoxidase (ZE) converts zeaxanthin back to antheraxanthin, 
and then to violaxanthin, causing a decrease in NPQ. Dif-
ferent mathematical models have been formulated by choos-
ing different molecular aspects of NPQ (for reviews, see 
Zaks et al. 2013; Bennett et al. 2018; Morris and Fleming 
2018). D’Haese et al. (2004), however, focused specifically 
on the role of VDE and the conversion of violaxanthin to 
antheraxanthin and zeaxanthin. On the other hand, Ebenhöh 
et al. (2011) presented a more detailed model of NPQ, based 
on zeaxanthin being converted by VDE, which is activated 
by acidification of the lumen. And this was then improved 
by Zaks et al. (2012) and Matuszyńska et al. (2016) by the 
inclusion of protonated PsbS for having a more complete 
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view of NPQ. We note that in addition to zeaxanthin and 
protonated PsbS, a role of lutein was included by Leuen-
berger et al. (2017) in their model. On the other hand, a 
general model of NPQ, considering only PSII in the reduced 
and the oxidized state being either quenched or unquenched, 
without going into molecular details of the quenching, has 
been formulated by Snellenburg et al. (2017). A similar 
approach was also used in the model by Sukhova et al. 

(2020). However, Bennett et al. (2018) related the extent 
of NPQ to the diffusion length of excitation, modelled as a 
random walk in the PSII pigment bed: the higher the quench-
ing, the shorter the diffusion length.

Using only a phenomenological model of NPQ in 
response to the light history, X-G. Zhu et al. (2004a) theo-
retically predicted that the delay in the recovery of NPQ can 
lead up to a 30% decrease of canopy carbon uptake. These 

Fig. 3   Schematic representation of the ‘light phase” of oxygenic 
photosynthesis in plants. Several protein complexes in the thylakoid 
membranes (TM) of the chloroplast participate in the production of 
ATP and NADPH needed for the CBB cycle to fix CO2: PSII and 
PSI operating in series, Cyt b6/f complex, PGR5/PGRL1 complex, 
NDH, PTOX, and CF0-CF1 ATP-synthase. The light energy harvested 
by LHCII and LHCI complexes is, respectively, channeled to P680 
in PSII and P700 in PSI, where photochemical reactions take place, 
and the photogenerated electrons are then transported by several 
electron carriers through a linear electron transfer chain from water 
to NADPH (black arrows). The PGR5/PGRL1 and the chloroplast 
NDH complexes, the last one forming a super-complex with PSI, 
mediate two CET pathways around PSI shown by red arrows. Also, 
the water-water cycle (WWC), and the PTOX activity are indicated 
by dark-red arrows. In parallel with the electron transport, protons are 
also transported across TM by PSII, Cyt b6/f, PGR5/PGRL1 complex, 
NDH, and PTOX, leading to a pH difference (ΔpH) across the TM, 
Furthermore, the charge separation(s) in the PSI and PSII reaction 
centers, as well as different ion transport steps through TM, generate 
an electric potential difference (ΔΨ) across TM, which together with 
ΔpH, forms the proton motive force (pmf) that is used for ATP pro-
duction at the ATP synthase. Finally, we show the CBB cycle, which 
works with NADPH, ATP and CO2, and few metabolic reactions in 
stroma, as indicated by purple arrows. Additionally, several bioen-
gineering targets for the improvement of crop yield are marked with 
blue stars: (1) the antenna size; (2) the NPQ that develops in PSII 
antenna; (3) the photosynthesis control exerted by Cyt b6/f; (4) the 
influence of CET on ΔpH, and thus on NPQ and ATP/NADPH ratio; 
(5) the influence of WWC on ROS concentration; (6) the influence of 

ion transporters on ΔΨ; (7) the partitioning of pmf into ΔpH and ΔΨ 
components; and (8) the influence of different manipulations of the 
CBB cycle on CO2 fixation efficiency, such as engineering Rubisco, 
Rac, photorespiration, and addition of CO2 concentration mechanisms 
near Rubisco. Figure modified from Stirbet et al. (2020). 2.3RT/F, a 
physical constant; CBB cycle, Calvin–Benson–Bassham cycle of car-
bon assimilation; CET, cyclic electron transport around PSI; CF1 and 
CF0, a catalytic part, and a membrane-embedded part (containing a 
proton channel) of the ATP synthase; Cyt, cytochrome; ΔΨ, electric 
potential difference across the thylakoid membrane; ΔpH, pH differ-
ence across the thylakoid membrane; Fe-S, Rieske iron sulfur protein, 
an electron carrier; Fd, ferredoxin iron sulfur protein, another elec-
tron carrier; FNR, ferredoxin-NADP+ oxidoreductase; LHCI and 
LHCII, light‐harvesting complexes of PSI and PSII, respectively; 
NADP+, nicotinamide adenine dinucleotide phosphate, oxidized 
form, which is a terminal electron carrier; NDH, NADH dehydroge-
nase-like complex that is involved in antimycin A insensitive cyclic 
electron transport; NPQ, nonphotochemical quenching of the excited 
state of chlorophyll; OEC, oxygen evolving complex of PSII; P680, 
P700, the primary electron donors of PSII and PSI; PGR5/PGRL1, 
a complex containing Proton Gradient Regulation 5 and Proton Gra-
dient Regulation Like 1 proteins that is involved in the antimycin A 
sensitive cyclic electron transport; pmf, proton motive force; PQ and 
PQH2, plastoquinone and plastoquinol; PSI and PSII, Photosystem I 
and II; PTOX, plastid terminal oxidase; QA, QB, first and second plas-
toquinone electron acceptors of PSII; Rac, Rubisco activase; ROS, 
reactive oxygen species; Rubisco, ribulose-1,5-bisphosphate carboxy-
lase/oxygenase; TM, thylakoid membrane; WWC​, water-water cycle
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theoretical predictions have been qualitatively confirmed, in 
tobacco, in field measurements (Kromdijk et al. 2016), and 
in soybean transformants overexpressing VDE, PsbS, and 
ZE (De Souza et al. 2022). It is important to note that the 
increased plant productivity of the transformants over the 
wild-types occurred only under fluctuating light conditions, 
which is, however, common in the field.

On photoinhibition, and the water‑water cycle

PSII is well-known to be easily photoinhited, but it is also 
rapidly repaired (for a review, see Vass 2012). Photoinhibi-
tion of PSII, initiated by the oxidation of amino acids of 
PSII D1/D2 proteins by hydroxyl radical HO• and superox-
ide anion radical O2

•−, has been experimentally confirmed 
(Kale et al. 2017). On the other hand, photoinhibition of PSI 
is rare, and occurs only under certain specific conditions 
(reviewed in Sonoike 2011; Furutani et al. 2020), e.g., at 
low temperature (Tjus et al. 1998). Photoinhibition of PSI 
is usually inferred from the decrease of Pm (Terashima et al. 
1994), the maximal transmittance at 820 nm, reflecting the 
oxidation state of P700, the primary electron donor in PSI 
reaction center.

However, Suorsa et al. (2012) showed clear PSI photoin-
hibition using Arabidopsis pgr5 mutant under fluctuating 
light; they observed a large decrease in its Pm; this pgr5 
mutant lacks the PGR5 protein, which facilitates a type 
of CET around PSI (see Fig. 3). Lack of the CET in the 
mutant disables the photosynthesis control (see below), 
and decreases the outflow of electrons from PSI (Kono and 
Terashima 2016), both leading to the electron flow from 
PSI to oxygen and the formation of O2

·−, which damages 
PSI. The O2

·− undergoes enzymatic as well as non-enzy-
matic reactions known as the water-water cycle (WWC; see 
Fig. 3), leading to the formation of other reactive oxygen 
species (ROS), but also to a safe ROS scavenging (reviewed 
in Asada 1999, 2006). Since ROS also participate in sign-
aling pathways (reviewed by Foyer and Hanke 2022), we 
note that we have here a fine tuning of WWC. The WWC 
has been mathematically modelled by Polle (2001), Valero 
et al. (2009, 2016), and Saadat et al. (2021); while Valero 
et al. (2009) have calculated steady-state fluxes through the 
WWC, Polle (2001) and Valero et al. (2016) have explored 
the dynamics of WWC function, respectively, under illu-
mination by constant light, and under illumination by fluc-
tuating light. On the other hand, Saadat et al. (2021) have 
presented the connection between the model of WWC with 
that of the CBB cycle; in addition, they have explored the 
WWC kinetics under fluctuating light.

The photosynthesis control

Apart from the central role of the acidified lumen in trigger-
ing the fast NPQ, protons already present in the lumen cause 
a back pressure against the movement of other protons going 
to the lumen during (re)oxidation of the plastoquinol (PQH2) 
on the luminal side of Cyt b6/f. The back pressure of protons 
leads to a decrease of the rate constant of PQH2 reoxidation 
(Rumberg and Siggel 1969), the effect being the so-called 
photosynthesis control (Tikhonov et al. 1981).

Increased photosynthesis control, on the one hand, results 
in the accumulation of P700+ (i.e., the oxidized PSI primary 
donor), which prevents the photoinhibition of PSI (see e.g., 
Sejima et al. 2014) but, on the other hand, it decreases the 
amount of NADPH produced, which decreases CO2 assimi-
lation, and thus plant productivity. Since the photosynthesis 
control requires a more acidified lumen than that needed for 
the triggering of the NPQ (Takizawa et al. 2007; Schansker 
2022), fine tuning of photosynthesis control and NPQ, i.e., 
in fact of the luminal pH, is thus important for attaining 
high plant productivity. In relation to that, transgenic rice 
lines with variable content of Rieske protein in the Cyt b6/f 
complex (see Fe-S in Fig. 3) indeed show enhanced leaf 
photosynthesis, making Cyt b6/f complex a target to increase 
grain yield (Yamori et al. 2016).

We note that the light-induced acidification of the lumen 
is caused not only by the linear electron transport from water 
to NADP+, but also by the CET around PSI (see Fig. 3), 
either via PGR5/PGRL1 protein complex, or via NDH-like 
complex (Kawashima et al. 2017; reviewed, e.g., in Shi-
kanai 2016). Several models of different complexity have 
already been constructed; several describe the role of CET 
on the luminal pH and the role of photosynthesis control on 
the electron transport (Hope et al. 1994; Sato et al. 2014; 
Morales et al. 2018a; Matuszyńska et al. 2019; Vershubskii 
and Tikhonov 2020; Johnson and Berry 2021).

The electric potential difference across the thylakoid 
membrane

To dissipate the charge of protons, accumulated in the lumen 
due to light-driven proton-coupled electron transport, coun-
ter ions (K+, Cl−, Mg2+; Hind et al. 1974) have been shown 
to move thorough the TM via related ion channels, which 
affect the electrical potential difference across the thyla-
koid membrane (ΔΨ), leading to pmf (= ΔpH + (2.3RT/F)
ΔΨ) partitioning (see Fig. 3), and, ultimately, this shows 
its impact on plant productivity (reviewed by e.g., Szabò 
and Spetea 2017). The role of counter ion fluxes and ΔΨ on 
photoprotection and photosynthetic performance have been 
clearly recognized, especially under fluctuating light con-
ditions, by, e.g., Li et al. (2021); Lazár et al. (2022a); and 
von Bismarck et al. (2023). Mathematical models of ΔΨ of 



30	 Photosynthesis Research (2024) 161:21–49

different complexity are available (see e.g., van Kooten et al. 
1986; Cruz et al. 2001; Lyu and Lazár 2017a, 2017b, 2022, 
2023; Li et al. 2021), and they need to be further examined 
and related to future experimental data.

Photosynthesis under fluctuating light

All of the processes mentioned above are, of course, impor-
tant, especially under fluctuating light conditions, when their 
fine tuning/regulation is repeatedly required. Since the fluc-
tuating light is more natural in the field than illumination 
with constant light intensity, as is mostly used in labora-
tory experiments, a large number of researchers are now 
exploring photosynthesis under fluctuating light conditions. 
Several models have now been formulated to describe the 
photosynthesis and its regulation under fluctuating light, and 
what is important, they have been related to plant and algal 
productivity (see e.g., Graham et al. 2017; Morales et al. 
2018b; Steen et al. 2020; Krichen et al. 2021; Salvatori et al. 
2022). For a better understanding of photosynthesis regula-
tion at the molecular level, there is also a special interest in 
experiments that use illumination by light with its intensity 
changing as a sinus function (see: Nedbal and Březina 2002; 
Nedbal et al. 2003, 2005); this has now been supported not 
only by mathematical models, but by new experiments (Ned-
bal and Lazár 2021; Lazár et al. 2022a; Niu et al. 2024). By 
changing the period (frequency) of the sinusoidal wave, a 
resonance with a particular regulatory process can be estab-
lished and thus the response of the regulatory processes to 
a particular frequency (period) of light oscillations is being 
revealed (Niu et al. 2023). Such an approach seems to be 
promising for finding frequency limits of particular regula-
tory processes, which can be important for obtaining higher 
plant productivity in the future.

Synthetic biology approach for improving 
the plant carbon metabolism

Synthetic biology is a highly promising interdisciplinary 
field that integrates molecular biology with biochemi-
cal engineering, combined with computational methods. 
Its objective is to modify existing organisms, or to create 
artificial novel life forms for newer purposes, including the 
improvement of photosynthesis (South et al. 2018; Stewart 
et al. 2018).

As discussed above (see Background on oxygenic pho-
tosynthesis), the photorespiratory cycle is a complex and 
energy consuming set of reactions required to recycle the 
2PG resulting from the oxygenation of RuBP by Rubisco 
(see reviews by Foyer et  al. 2009; Walker et  al. 2016), 
which takes place mainly in chloroplasts, peroxisomes, 

and mitochondria. Further, photorespiration is known to be 
significant in C3 plants; it can increase considerably under 
warm and dry environments (Long et al. 2015). By using 
mathematical modelling, X.G. Zhu et al. (2008) showed 
that the maximal theoretical efficiency of gross photosyn-
thesis in C3 plants decreases due to photorespiration by 
≈ 49% at 30℃ and 380 ppm [CO2]. According to Walker 
et al. (2016), even a 5% reduction in photorespiration would 
be worth almost 540 million dollars a year in yield gain in 
the US Corn Belt alone! Therefore, decreasing photorespi-
ration has been an early goal for crop yield improvement 
(see e.g., Long et al. 2006, 2015; Peterhansel and Maurino 
2011; Evans 2013; Ort et al. 2015; Betti et al. 2016; Walker 
et al. 2016; Orr et al. 2017; South et al. 2018; Batista-Silva 
et al. 2020). However, this process also plays multiple meta-
bolic and regulatory roles (Foyer et al. 2009; Timm et al. 
2016; Bauwe 2023; Chen et al. 2023c). Thus, decreasing 
the efficiency of photorespiration must also lead to stabil-
ity and beneficial regulation of plant metabolism (Walker 
et al. 2016). There are several approaches to bioengineer 
photorespiration that can reduce the carbon and energetic 
loss in C3 crops (Raines 2006; South et al. 2018), such as 
by (i) increasing the efficiency of Rubisco to assimilate CO2 
through genetic manipulation; (ii) bioengineering new alter-
native metabolic pathways, i.e., photorespiration bypasses, 
by introducing non-native genes that are used to process 
the glycolate more efficiently; (iii) preventing Rubisco oxy-
genation reaction by enriching the [CO2] at the Rubisco 
site, through the installation of pyrenoid or carboxysome 
structures obtained from single-celled algae or cyanobac-
teria, and, this together with the expression of bicarbonate 
transporters; and (iv) by enriching [CO2] at the Rubisco site, 
by introducing C4 photosynthesis into C3 plants. Below, we 
briefly present some of these approaches.

Bioengineering Rubiscos with higher rates of CO2 
assimilation

More than 90% of the inorganic carbon converted into bio-
mass, in Nature, is fixed by Rubisco (ribulose-1,5-bispho-
sphate carboxylase/oxygenase), which represents 50% of 
all soluble proteins in a leaf, and it is the most abundant 
protein on Earth (Bar-On and Milo 2019); for reviews, see 
Spreitzer and Salvucci (2002), Erb and Zarzycki (2018), and 
Prywes et al. (2023); for historical aspects, see Portis and 
Parry (2007) and Sharkey (2023). This enzyme is known to 
limit carbon assimilation of C3 plants, due to its activity as 
oxygenase, and its low turnover frequency (i.e., between 1 
and 10 s−1; Erb and Zarzycki 2018). In order to increase crop 
production, different ways to improve the activity of Rubisco 
have been suggested (see e.g., Zhu et al. 2010; Raines 2003, 
2011; Cummins et al. 2018; Paul 2021; Oh et al. 2023; Pry-
wes et al. 2023). These include: (i) increasing the Rubisco 
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content within chloroplasts (Salesse-Smith et al 2018, 2020; 
Yoon et al. 2020); (ii) replacing the inefficient endogenous 
Rubisco with a better performing one (Zhu et al. 2004b; Lin 
et al. 2014); (iii) decreasing photorespiration by increasing 
Rubisco specificity for CO2 relative to O2 through genetic 
modification (Zhu and Long 2009; Lin et al. 2014; Carmo-
Silva et al. 2015; Sharwood 2017); and (iv) manipulating 
the activation of Rubisco by Rubisco activase (Rca) (Mott 
and Woodrow 2000; Carmo-Silva et al. 2015; Perdomo et al. 
2019; Chen et al. 2023a).

On a positive note, Salesse-Smith et  al. (2018) have 
already obtained a > 30% increase in Rubisco content in 
maize by overexpressing its large (LS) and/or small (SS) 
subunits, as well as the Rubisco assembly chaperone 
RUBISCO ASSEMBLY FACTOR 1 (RAF1). The trans-
genic plants had 15% increased CO2 assimilation (i.e., the 
light-saturated photosynthetic capacity, ASAT), which was 
correlated with higher fresh weight. The difference between 
the increase in Rubisco content (i.e., 30%) and that of ASAT 
(i.e., 15%) was accounted by a decrease in Rubisco activa-
tion state up to 23%. Furthermore, important results have 
been obtained also by Yoon et al. (2020), who have overex-
pressed Rubisco in paddy rice with its own promoter. Their 
study showed increases in filled spikelets, with 28% higher 
grain yields in paddy fields, and 11–23% higher total bio-
mass. In addition, there was greater yield gain for nitrogen 
added in the transgenic rice than in the wild-type, indicat-
ing an increased nitrogen use efficiency in the former. Long 
(2020) suggests that this work and that of Salesse-Smith 
et al. (2018) “contradict the space limitation hypothesis for 
C3 and C4 crops”, which assumes that there is no physi-
cal space for a higher Rubisco content in their chloroplasts 
(Pyke and Leech 1987). Moreover, Long (2020) has also 
highlighted the results obtained by Yoon et al. (2020), stat-
ing that “an engineered increase in photosynthetic capacity 
does, in fact, result in increased grain yield under produc-
tion field conditions in the world’s most important cereal 
— rice”.

Concerning the work on Rubisco improvement, Zhu et al. 
(2004b) have analyzed the potential effects on the produc-
tivity of a C3 crop plant by engineering a ‘foreign’ Rubisco 
with higher catalytic rates per active site (see e.g., Erb and 
Zarzycki 2018), and/or higher specificities for CO2 relative 
to O2; for this, they used a steady-state biochemical model 
for leaf photosynthesis coupled with a canopy biophysi-
cal microclimate model. The results obtained by Zhu et al. 
(2004b) suggest that introducing a Rubisco with a high car-
boxylation rate could, indeed, lead to increased crop yields, 
without an increase in the amount of Rubisco per unit leaf 
area. Their results show that the use of Rubisco from Ama-
ranthus edulis (a rare C4 plant) could increase the carbon 
gain by 17%, while that from Griffithsia monilis (a red alga) 
could lead to greater than 25% carbon gain. Nonetheless, the 

challenges of engineering foreign Rubiscos in crop plants, 
or bioengineering the native ones, are still to be fully under-
stood and exploited (Sharwood 2017; Chen et al. 2023a). 
Moreover, it is known that rice yields can be increased by 
23%, when CO2 atmospheric concentration is raised to 
627 ppm (Ainsworth 2008), since the Rubisco specificity 
to oxygen decreases by increasing CO2. However, Hu et al. 
(2022) showed that to maximize this CO2 fertilizer effect 
in the future, heat-resistant, high-yield hybrid rice cultivars 
with large sink capacity, and appropriate nitrogen supple-
ment should be selected. For further information, see Cao 
et al. (2021).

Further, the role of Rubisco activase (Rca) on the Rubisco 
performance in non-steady-state photosynthesis was studied 
by Mott and Woodrow (2000) by using a photosynthesis 
model to predict the optimum protein allocation between 
Rubisco and Rca for plants under different light conditions, 
including light flecks of various duration; we note that Rca 
is an indispensable catalytic chaperone of Rubisco, which 
remodels its active site, helps the release of inhibitors, and 
restores its catalytic functions (Waheeda et al. 2023). Simu-
lations by Mott and Woodrow (2000) showed that the pro-
tein distribution leading to the maximum steady-state rate 
of photosynthesis does not produce the maximum activa-
tion rate for Rubisco, and that in fluctuating light the plant 
must allocate more protein to the Rca than when exposed to 
constant light. Thus, further research is needed to find and 
improve Rubisco and Rca engineering based on the observa-
tions, mentioned above.

Finally, we note that, while Rubisco plays a key role in 
photosynthesis, the increased activity of other enzymes 
participating in the CBB cycle can also affect positively 
the carbon assimilation and plant growth (see e.g., Simkin 
et al. 2019). Indeed, modelling results have shown that the 
natural distribution of the enzymes within the CBB cycle 
is not optimal and could limit photosynthesis (Zhu et al. 
2007), and that higher levels of ‘for example, sedoheptulose-
1,7-bisphosphatase and fructose-1,6-bisphosphate aldolase, 
as well as of the enzymes related to sink capacity, could sup-
port an increased productivity (Kubis and Bar-Even 2019). 
For example, Morales et al. (2018a) have analyzed potential 
improvements in CO2 assimilation resulting from optimizing 
different regulatory processes; their simulations showed 17% 
improvement when the limiting steps, related to the photo-
activation of the CBB cycle enzymes and stomatal open-
ing, were removed. Further, Matuszyńska et al. (2019) have 
used the metabolic control analysis (MCA) to investigate the 
regulatory dependence between the photosynthetic electron 
transport and the CBB cycle, to quantify the control distribu-
tion of ‘demand and supply’ under different light conditions; 
Matuszyńska and coauthors found that the ‘demand’ reac-
tions control the flux under light-saturating conditions (with 
seduheptulose-1,7-bisphosphatase maintaining the highest 
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overall flux control, as shown by Poolman et al. 2000), while 
the ‘supply’ reactions (sustained by PSII and PSI activities) 
show a higher overall flux control under light-limited con-
ditions. Furthermore, Kandoi et al. (2022), who overex-
pressed carbonic anhydrase βCA3 from Flaveria bidentis 
into Arabidopsis thaliana, observed that this led to increased 
amino acid content, improved photosynthesis (by 16–22%), 
better water-use efficiency (by 22–26%), higher starch con-
tent (by 10–19%), and higher biomass (by 14–20%). Lastly, 
Hamdani et al. (2019b) discovered the importance of the 
β-glucosidase 5 gene to obtain a higher quantum yield of 
photosynthesis in rice—the mechanism of which remains 
to be further investigated.

Reducing photorespiration by engineering 
synthetic bypasses routes

We now provide a glimpse of the bioengineering approach 
involving the introduction of alternative pathways to reduce 
photorespiration, i.e., the ‘photorespiratory bypasses’, such 
as those proposed by Carvalho (2005), Kebeish et al. (2007), 
Carvalho et al. (2011), and Maier et al. (2012) (also see 
Raines 2011; Peterhansel et al. 2013; Xin et al. 2015; Betti 
et al. 2016).

(1)	 Kebeish et al. (2007) have introduced the glycolate 
catabolic pathway from Escherichia coli into Arabi-
dopsis thaliana, in which the glycolate is converted to 
glycerate only in chloroplasts (Fig. 4, in blue), with 
no NH3 release, but with CO2 release into chloroplasts 
instead of mitochondria, which is energetically more 

economical; it increases the net photosynthesis, as well 
as the biomass.

(2)	 Carvalho et al. (2011; also see Carvalho 2005) engi-
neered a photorespiratory bypass in which the glyoxy-
late is converted to hydroxy-pyruvate in the peroxisome 
(Fig. 4, in green); here, the NH3 release is abolished, 
one-quarter of the carbon from glycolate is released as 
CO2 in the peroxisomes, and three-quarters of the car-
bon from glycolate is re-converted to PG; however, the 
implementation of this bypass in Nicotiana tabacum 
was only partially successful.

(3)	 Maier et al. (2012) introduced a photorespiration bypass 
in Arabidopsis thaliana, in which the glycolate had a 
complete oxidation in chloroplasts (Fig. 4, in red), with 
the data indicating that both the photosynthesis and 
biomass of the transgenic plants were enhanced.

Xin et al. (2015) have analyzed theoretically the above 
three bypasses by using the C3 photosynthesis model of Zhu 
et al. (2007), and by adding the sets of the new biochemi-
cal reactions of these bypasses. The results obtained by Xin 
et al. (2015) led them to the conclusion that not all pho-
torespiration bypasses are functional or beneficial since they 
predict that: (i) the bypass of Kebeish et al. (2007) would 
increase the photosynthetic rate under a range of CO2 and 
light conditions; (ii) the bypass of Carvalho et al. (2011) 
would enhance photosynthesis, but only under low light 
intensity; and (iii) that the bypass of Maier et al. (2012) 
would reduce the photosynthetic rate, which means that the 
loss of CO2 in this pathway would not be compensated by 
the benefit of an increased CO2 concentration in the chlo-
roplast. However, we note that the above in silico predic-
tions were not in complete agreement with the experimen-
tal results, as the photosynthetic rate measured by Kebeish 
et al. (2007) increased only under low light, and that meas-
ured by Maier et al. (2012) showed a modest increase, not 
a decrease. Xin et al. (2015) explained that it is difficult to 
predict with precision if a bypass is a viable approach to 
optimize the photosynthetic rate since the photorespiratory 
pathway can interact with many other pathways, such as the 
nitrogen metabolism and respiration (see also Hodges et al. 
2016). However, the bypasses that increase the CO2 con-
centration close to Rubisco in chloroplasts, and reduce the 
energy costs of photorespiration (by avoiding the ammonium 
release), are promising, and must be pursued further.

A number of other photorespiratory bypasses have been 
studied, and show promising results in enhancing photosyn-
thesis in different crop plants. These include those by Nölke 
et al. (2014) on potato (Solanum tuberosum), by Dalal et al. 
(2015) on the biofuel crop plant Camelina sativa, by South 
et al. 2019 and Cavanagh et al. (2022) on tobacco (Nico-
tiana tabacum) (see this pathway in Fig. 4), and by Shen 
et al. (2019) and Wang et al. (2020) on rice (Oryza Sativa). 

Fig. 4   Photorespiration in plants, and bioengineering approaches for 
its optimization. Photorespiration in C3 plants (black), with four engi-
neered photorespiratory bypasses to increase CO2 assimilation and/
or reduce energy expenses; in blue is the pathway of Kebeish et  al. 
(2007); in green is the pathway of Carvalho et al. (2011); in red is the 
pathway of Maier et al. (2012); and in purple is the pathway of South 
et  al. (2019). Enzymatic reactions or metabolite transport steps are 
indicated by arrows. Figure modified from South et al. (2018)



33Photosynthesis Research (2024) 161:21–49	

Due to the relationship of photorespiration with other meta-
bolic pathways (see the above discussion) adequate multi-
scale crop models (see e.g., Wu et al. 2019; Wu 2023), as 
well as complex laboratory and field trials (see e.g., Wang 
et al. 2020; Cavanagh et al. 2022), are necessary for the 
verification of these bypasses. In view of the advances 
made in genome engineering and in synthetic biology, we 
are extremely optimistic that other possible inducible meta-
bolic pathways will be found in the future, including those 
for a fully optimized photorespiration in crop plants under 
field conditions.

Introducing CO2 concentrating mechanisms into C3 
plants

The possible effects of the addition of a cyanobacterial CO2 
concentrating mechanism (i,e., a carboxysome; see e.g., 
Price et al. 2011, 2013) into a C3 crop leaf were studied 
theoretically by McGrath and Long (2014). We note that 
a carboxysome has a polyhedral structure covered with a 
protein shell (see Fig. 5), which contains carbonic anhy-
drase (CA) and Rubisco arranged in a semi-ordered array 
(Long et al. 2007). McGrath and Long (2014) used a kinetic 
model containing 9 biological compartments, as well as the 
photosynthesis model of Farquhar et al. (1980), to evaluate 

the potential of the added carboxysome into the stroma (of 
the chloroplast) to improve C3 photosynthesis, and to deter-
mine the necessity of the introduction of other components, 
such as bicarbonate transporters. These simulations have 
shown that ≈ 60% improvement in the net CO2 uptake can 
be achieved without any modification of the leaf anatomy, 
and it could lead to 36%-60% increase in the crop yield; also, 
the addition of bicarbonate transporters is expected to fur-
ther increase photosynthesis by 16%. Success in engineering 
α-carboxisomes into tobacco chloroplasts has been obtained 
by Long et al. (2018), who, by using a reduced gene set, 
have succeeded in increasing CO2 fixation and crop yield 
up to 60% in a transgenic tobacco, as previously predicted 
by McGrath and Long (2014). Furthermore, Chen et al. 
(2023b) have been able to generate morphologically correct 
α-carboxysomes, by transforming 9 carboxysome genetic 
components derived from a proteobacterium.

Further, we note that the modelling work of Fei et al. 
(2022) has provided insights into the operating principles 
of the pyrenoid-based CO2-concentrating mechanism of 
the green alga Chlamydomonas reinhardtii (also see: Bur-
lacot and Peltier 2023). Based on the results obtained with 
their model, as well as the data from the literature (Wang 
et al. 2016; Meyer et al. 2017; Mukherjee et al. 2019), Fei 
et al. (2022) suggest that a physical barrier is necessary for 
the pyrenoid to diminish the CO2 leakage, and to provide 
a proper localization of the enzymes to reduce the futile 
cycling between CO2 and bicarbonate; in addition, they have 
proposed a four-step path for engineering pyrenoids into 
crop plants. For a schematic presentation of the introduction 
of CO2 concentrating mechanisms into C3 plants, see Fig. 5.

Bioengineering C4 rice

The C4 plants have a higher potential energy-conversion 
efficiency and improved nitrogen and water use efficiencies 
than the C3 plants, particularly in hot climates, due to their 
CO2-concentrating mechanism at the Rubisco site in bundle 
sheath (BS) cells, and a reduced photorespiration (Schlüter 
and Weber 2020). Therefore, introducing C4 pathway into 
C3 plants is considered to be a highly desirable way to 
increase their yield (Schlüter and Weber 2016; Kubis and 
Bar-Even 2019). However, this is a difficult task, as key fea-
tures of C4 photosynthesis must be introduced into C3 plants 
(Cui 2021), such as the Kranz anatomy (Hatch and Osmond 
1976), which implies a spatial separation between the CO2 
fixation and carbohydrate synthesis into the mesophyll (M) 
and BS cells. Moreover, in NADP-ME-type C4 plants, the M 
cells perform whole-chain electron transport, while the BS 
cells have low PSII activity, but high rates of CET around 
PSI to drive ATP synthesis, because most of NADPH is 
supplied by the M cells, via the malate shuttle (Munekage 
and Taniguchi 2017; Sales et al. 2021), which is not the 

Fig. 5   Different strategies to bioengineer carbon concentrating com-
ponents in chloroplasts from C3 plants. They consist of the expres-
sion, in the chloroplast stroma, either of a functional cyanobacterial 
carboxysome (orange icosahedron), or an algal pyrenoid (red circle), 
as well as HCO3

− transporters (red and orange ovals) on the inner 
chloroplast membrane. Figure modified from Batista-Silva et  al. 
(2020). CBB cycle, Calvin–Benson–Bassham cycle of carbon assimi-
lation; 2PG, 2-phosphoglycolate; 3PG, 3-phosphoglycerate; RuBP, 
ribulose 1,5-bisphosphate
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case in C3 plants. An international C4 rice consortium with 
the aim to bioengineer C4 photosynthesis in rice began in 
2008 (see https://​c4rice.​irri.​org/), and significant progress 
has already been made to identify genes that are involved in 
the NADP-ME-type C4 pathway, and to successfully intro-
duce some of these into rice, as published by Ermakova et al. 
(2020, 2021). On the other hand, important modelling work 
is needed in order to verify different hypotheses related to 
the various ways to proceed in this endeavor, and to regu-
late the functionality and viability of such radical changes 
that control morphological and biochemical conversion in 
rice photosynthesis. In this direction, Ermakova et al. (2020) 
have used a combination of the C3 model of photosynthesis 
by Farquhar et al. (1980) and the enzyme- limited C4 model 
of von Caemmerer (2000), showing that even small amounts 
of C4 photosynthesis introduced around the existing veins in 
rice could enhance photosynthesis. This is consistent with 
the results obtained by Wang et al. (2017a, b), in which a 
3D reaction diffusion model of connected M and BS cells 
in a C3 rice leaf was used to answer the question: Would 
the photosynthetic efficiency be improved by expressing C4 
metabolism into a C3 leaf structure, without removing the 
C3 background metabolism? Data of Wang et al. (2017a, 
b) show that this is indeed possible, but in the engineered 
C3–C4 leaf, the partitioning of the energy between C3 and 
C4 photosynthesis, and that of Rubisco between the M and 
BS cells, are the main factors that would control the pho-
tosynthetic efficiency. Furthermore, Bellasio and Farquhar 
(2019) have used a leaf-level biochemical model for C3, 
C2, C2 + C4 and C4 photosynthesis (cf. Bellasio 2016) to 
simulate the introduction of C2 and C4 photosynthesis in 
C3 rice. Besides the ATP-limited and NADPH-limited sub-
model of CO2 assimilation, the above-mentioned model 
contains a hydromechanical and biochemical sub-model of 
stomatal conductance, and a mechanistic description of light 
reactions necessary to simulate the NADPH and ATP gen-
eration, including cyclic electron flow around PSI that can 
be engaged, variably, to regulate the NADPH/ATP ratios. 
The simulations with this model have shown that C4 photo-
synthesis becomes detrimental under low light, at low tem-
perature, and at high [CO2], which agrees with the available 
ecophysiological observations. Additionally, Wang et al. 
(2021) have studied the limiting factors of the C4 photosyn-
thesis under non-steady-state conditions, by combining gas 
exchange data on maize, sorghum, and sugarcane (obtained 
under fluctuating light regimes) with a dynamic C4 photo-
synthesis model including dynamic stomatal conductance, 
post-translational regulation of key photosynthetic enzymes 
(with their temperature responses), and leaf energy balance. 
By comparing their model outputs with the rates of CO2 
uptake and leaf stomatal conductance, Wang et al. (2021) 
showed that Rubisco activase, pyruvate phosphate dikinase 
regulatory protein, and stomatal conductance are the major 

limitations for the efficiency of the NADP-ME-type C4 pho-
tosynthesis during dark-to-high light transitions, which indi-
cates that these components are good possible bioengineer-
ing targets for increasing photosynthesis in some C4 crops.

Models are imperative for improving crop 
yield

For the improvement of crop yields, canopy models are cru-
cial, as they are key to not only basic long-term research on 
crop productivity, but also for applied research that provides 
short to medium term predictions at both field and subfield 
scales. Crop models can be of different types, depending on 
their design, such as empirical (e.g., correlative or statisti-
cal), and process-based models, which require physiological 
data from field experiments for parameterization (see e.g., 
Kasampalis et al. 2018). The process-based crop growth 
models describe the photosynthesis of the entire crop field, 
as well as the daily and seasonal integrals of CO2 assimila-
tion rate of the canopy (Ac), which are correlated positively 
with daily and seasonal biomass production (X-G. Zhu et al. 
2012, 2013; Song et al. 2017). Several types of canopy mod-
els have been developed to realistically simulate canopy pho-
tosynthesis under heterogeneous microenvironments, such 
as the big leaf model (Sellers et al. 1996), the sunlit/shaded 
model (De Purry and Farquhar 1997; Wu et al. 2018), and 
the 3D canopy photosynthetic model (Song et al. 2013; Liu 
et al. 2021). Additionally, the architecture of the crops—
such as plant height, plant density, spike length, spike height, 
position in the canopy, and leaf angle—is a major factor that 
influences canopy photosynthesis and crop yields (see e.g., 
Song et al. 2017; Chang et al. 2022). For example, Chang 
et al. (2022) found that, in general, shorter plant height, erect 
leaves, lower spike position, and appropriate plant densities 
can improve the daily Acnet.

As mentioned earlier in the paper, increasing photosyn-
thesis is an important target to increase crop productiv-
ity (Long et al. 2006; Evans 2013; Long 2014; Ort et al. 
2015; Furbank et al. 2020; Zhu et al. 2010, 2022; Walter 
and Kromdijk 2022). For this reason, model-guided genetic 
modifications (von Caemmerer et al. 2012; South et al. 2019; 
Ermakova et al. 2020), and model-guided natural variations 
of the photosynthetic parameters (Qu et al. 2017; Ye et al. 
2019; Yin et al. 2022) have already been employed to pro-
mote crop yield growth.

Simple scale crop models can provide explanations for 
specific biological phenomena and are capable of guiding 
the development of measurement techniques, as well as 
providing suggestions for the modification of plant traits in 
a direction that is beneficial for the humankind. However, 
these models cannot track key interactions and gaps result-
ing from the complex system characteristics, especially the 

https://c4rice.irri.org/
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nonlinear behavior that may appear through the feedback 
of the interaction of crop growth, interspecific competition, 
and dynamic micro-environments (Qu et al. 2011; Wu et al. 
2019). Several studies have, however, already shown that the 
effect of manipulating photosynthesis can become weaker 
at the canopy scale, because of the complexities in the light 
interception process at the canopy level (Zhu et al. 2012; 
Song et al. 2013; Yin and Struik 2017; Wu 2023; Wu et al. 
2016, 2018, 2019, 2023); in fact, light absorption, even by 
a single leaf. is a nonlinear function, see e.g., Baránková 
et al. (2016) and Nauš et al. (2018). In addition, nitrogen 
deficiency has been shown to reduce the yield-enhancing 
effects of increased CO2 on photosynthesis as well as growth 
(Wu et al. 2019). Therefore, cross-scale crop growth models 
should prevail in crop modelling, as they can reveal new, 
the so-called emergent features that cannot be “seen” by a 
simple scale model, obtained by the interaction of models 
at different spatial and temporal scales (Fig. 6). Indeed, the 
crop mechanistic models should integrate seamlessly the 
multiscale physical and molecular processes in the crops, by 
including sub-models of different processes of crop growth 
and development in cells, tissues, organs, individual plants, 
and even the entire crop (see Xiao et al. 2017; Chang et al. 
2019a; Hammer et al. 2019). Further, the crop models may 
also contain different types of data, depending on the goal 
of the study (see e.g., Xiao et al. 2017; Benes et al. 2020). 
For example, there can be (i) crop models which include 
remote sensing data (Kasampalis et al. 2018); (ii) spatial-
ized crop models, from small fields to global level (Pasquel 
et al. 2022); (iii) metabolic engineering models (Cavanagh 
et al. 2022); and (iv) systems models including phenomics, 
genomics, and/or high-throughput photosynthetic measure-
ments data (Chang et al. 2019b; Baslam et al. 2020; Yin 
et al. 2022).

Figure 6 shows the basic framework of a cross-scale 
model, from the genes to the stand; further, it incorporates 
information on the climate and the nutritional factors. Such 
models not only help us visualize the physiological state of 

the crops but allow us to predict how the growth and the 
development of plants may respond, comprehensively, to 
different environmental signals (Lynch 2007); in addition, 
they can guide the experimental design and the technology 
development to increase crop yields and to ensure that the 
crops grow in suitable environments (see e.g., Srinivasan 
et al. 2017).

At present, cross-scale crop growth models are widely 
used to study the response mechanisms of crop productiv-
ity under different environmental and management condi-
tions, and to explore potential ways to improve crop yields 
(Benes et al. 2020; Chang et al. 2022; Wu et al. 2016, 2018, 
2019, 2023). For example, the CERES (Crop Environment 
Resource Synthesis) model ranges from gene-based mod-
elling, nutrient and water stress, farm and precision man-
agement to regional assessment of climate change impacts. 
This cross-scale system model has been widely used in the 
analysis of agricultural experiments, in yield forecast, and in 
production risk assessment (Jones et al. 2003). Also, APSIM 
(Agricultural Production System Simulator) is a modular 
crop system model that is used to simulate the biophysi-
cal processes in agricultural systems. We note that APSIM 
allows independent modules describing the key components 
of agricultural systems to be “plugged” into the platform, 
so that the ‘master- model’ becomes suitable for relatively 
accurate prediction of the crop yield under different condi-
tions, under different climate, soil, and management fac-
tors, while analyzing long-term water resource management 
issues (Brown et al. 2014; Holzworth et al. 2014).

Table 1 is a summary of what is known, as well as the 
differences between the four commonly used cross-scale 
crop growth models, namely WOFOST (World Food Stud-
ies), Aqua Crop, CERES (Crop Environment Resource 
Synthesis) and APSIM (Agricultural Production Systems 
Simulator). In addition, the cross-scale crop growth mod-
els have been widely used in optimal management studies 
under different stress conditions, such as water stress (Yang 
et al. 2017; Wang et al. 2017a, b; Zhuo et al. 2022), nutrient 
stress (Shibu et al. 2010; Saengwilai et al. 2014; Galindo-
Castaneda et al. 2018), and weather stress (Rosenzweig et al. 
2013; Gabaldón-Leal et al. 2016; Rincent et al. 2019). The 
key to establish a cross-scale crop model is to have a series 
of basic data, including soil properties and crop parameters. 
However, there are difficulties in obtaining and calibrating 
some of the model parameters. At present, most parameters 
of crop system models are default or empirical parameters, 
which often lead to deviations in the accuracy of the model 
simulation. In addition, as a complex system model, the 
cross-scale crop models require verification and evaluation 
of experimental data to describe the rationality of its single 
processes and the interaction relationship between the vari-
ous processes. The current acquisition of crop characteris-
tics is mostly based on their manual measurement, which is 

Fig. 6   Basic framework for cross-scale modelling
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time-consuming, and laborious. Further application of spec-
tral technology, agricultural big data, agricultural internet 
of things, computer vision technology, and citizen science 
approach will, in the future, make it easier for the acquisition 
of crop characteristics.

For overcoming the challenges ahead of us, further 
research in modelling is essential, especially by using 
advances in promising and fast developing domains, such 
as artificial intelligence (see e.g., Xia et al. 2023) and remote 
sensing (RS) techniques (Kasampalis et al. 2018; Zhou et al. 
2022). Since the climate change is affecting the agriculture 
through increased temperature and atmospheric CO2 con-
centration, as well as by modification of the weather pat-
terns, it is important to monitor the status of growth during 
the entire lifecycle of the crops, as it can provide valuable 
information on the ‘health’ and the yield potential of the 
crops. Remote sensing (RS) has already proven to be an 
effective method for monitoring crop growth and for the esti-
mation of the yield, due to its ability to provide large-scale, 
non-destructive, low-cost, and highly efficient approach to 
monitor crops (see e.g., Abdulridha et al. 2019; Mahlein 
et al. 2019). However, solar-induced (chlorophyll) fluores-
cence (SIF) is a much more accurate way to measure the 
photosynthetic activity of plants than the traditional indices 
of RS, such as the Normalized Difference Vegetation Index 
(NDVI), the Enhanced Vegetation Index (EVI), the Photo-
chemical Reflectance Index (PRI) and the Leaf Area Index 
(LAI), which are only slightly sensitive to the actual photo-
synthesis (Meroni et al. 2009; Zhang et al. 2016; Song et al. 
2020). For example, Pandiyan et al. (2021) have successfully 
used the SIF signal to monitor the effect of drought on pho-
tosynthesis. Further, Guanter et al. (2014) showed that SIF 
is highly correlated with the gross primary production (GPP) 
and is much more sensitive to environmental changes than 
the other indices mentioned above (see also Frankenberg and 
Berry 2018). Thus, SIF has a distinct advantage in obtain-
ing information on photosynthesis and in predicting crop 
yield, especially under the climate change (Peng et al. 2020). 
Further, Magney et al. (2019) have concluded, based on the 
interpretation of SIF signals, that the wavelengths used by 
satellites are stable enough to even track the downregula-
tion of photosynthesis resulting from stress, while spectral 
shape changes respond more strongly to dynamic changes in 
canopy structure and chlorophyll concentration. An example 
in this direction has been the use of hyperspectral imagery 
and SIF retrievals from aerial and satellite remote sensing 
for the detection of variations in the rates of photosynthesis 
in many crops (Camino et al. 2019).

Finally, although the current satellite SIF data have rela-
tively low spatial resolution, which limits their accuracy in 
estimating crop yield at finer scales (Zhang et al. 2019), a 
convolutional neural network (CNN) framework has been 
proposed by Kang et al. (2022) to downscale the SIF data 

from a resolution of 0.05° to 0.0005°. This newer method 
has been quite effective, the results showing a high level of 
agreement with the referenced SIF (i.e., the spatial continu-
ous SIF; see Kang et al. 2022). This research emphasizes the 
significance of using higher resolution SIF data (i.e., CNN-
SIF) to obtain precise crop yield estimates, particularly for 
farms that are not contiguous. Further, by using other remote 
sensing indices together with SIF to predict crop yields, it 
is possible to obtain better results than by using only one 
alone (Liu et al. 2022). Therefore, we suggest that it is essen-
tial to conduct further research to evaluate the effectiveness 
of high-resolution SIF data in predicting yields of various 
crops. A new satellite called FLEX (Fluorescence Explorer) 
by European Space Agency is planned to be launched in 
2025; it has been designed especially for the high-resolution 
detection of SIF (see https://​earth.​esa.​int/​eogat​eway/​missi​
ons/​flex) should be helpful in this.
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