Publications
by Organism
Chlamydomonas reinhardtii |
Anacystis nidulans & other Cyanobacteria |
Chlamydomonas reinhardtii (green alga)
[1]Spalding MH, C. Critchley C, Govindjee, Ogren WL (1984) Influence of Carbon-di-oxide concentration during growth on fluorescence Induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynth Res 5: 169-176
[2]El-Shintinawy F, Xu C, Govindjee (1990) A dual bicarbonate-reversible formate effect in Chlamydomonas cells. J Plant Physiol 136: 421-428
[3]Shim H, Cao J, Govindjee, Debrunner PG (1990) Purification of highly active oxygen-evolving Photosystem II from Chlamydomonas reinhardtii. Photosynth Res 26: 223-228
[4]Govindjee, Schwarz B, Rochaix J-D, Strasser RJ (1991) The herbicide-resistant D1 mutant L275F of Chlamydomonas reinhardtii fails to show the bicarbonate-reversible formate effect on chlrophyll a fluorescence transients. Photosynth Res 27: 199-208
[5]Govindjee, Eggenberg P, Pfister K, Strasser RJ (1992) Chlorophyll a fluorescence yield decay in herbicide-resistant D1 mutants of Chlamydomonas reinhardtii and the formate effect. Biochim Biophys Acta 1101: 353-358
[6]Strasser R, Eggenberg P, Pfister K, Govindjee (1992) An equilibrium model for electron transfer in Photostystem II acceptor complex: An application to Chlamydomonas reinhardtii cells of D1 mutants and those treated with formate. Archives de Sceance, Geneve 45: 207-224
[7]Kramer DM, Roffey RA, Govindjee, Sayre RT (1994) The At thermoluminescence band from Chlamydomonas reinhardtii and the effects of mutagenesis of histidine residues on the donor side of the photosystem II D1 polypeptide. Biochim Biophys Acta. 1185: 228-237
[8]Roffey RA, Kramer DM, Govindjee, Sayre RT (1994) Lumenal side histidine mutations in the D1 protein of Photosystem II affect donor side electron transfer in Chlamydomonas reinhardtii. Biochim Biophys Acta. 1185: 257-270
[9]Srivastava A K, Strasser RJ, Govindjee (1995) Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinhardtii. Photosynth Res 43: 131-141
[10]Hutchison RS, Xiong J, Sayre RT, Govindjee (1996) Construction and characterization of a Photosystem II D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardtii. Biochim Biophys Acta 1277 :83-92
[11]Xiong J, Hutchison RS , Sayre RT, Govindjee (1997) Modification of the Photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardtii. Biochim Biophys Acta 1322: 60-76
[12]Xiong J, Minagawa J, Crofts A R, Govindjee (1998a) Loss of inhibition by formate in newly constructed Photosystem II D1 mutants, D1-R257E and D1-R257M, of Chlamydomonas reinhardtii. Biochim Biophys Acta. 1365: 473-491
[13]Xiong J, Subramaniam S, Govindjee (1998b) A knowledge-based three dimensional model of the Photosystem II reaction center of Chlamydomonas reinhardtii. Photosynth Res 56: 229-254
[14]Ruiz FA, Marchesini N, Seufferheld M, Govindjee, R. Docampo R (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276 : 46196-46203
[15]Govindjee, Seufferheld M (2002) Non-photochemical quenching of chlorophyll a fluorescence: Early history and characterization of two xanthophyll cycle mutants of Chlamydomonas reinhardtii. Functional Plant Biology ( Now Aust J Plant Biol) 29: 1141-1155
[16]Holub O , Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg RM (2007)Flourescence lifetime imaging microscopy of Chlamydomonas reinhardtii: Non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. Journal of Microscopy 226: 90-120
[17]Rose S, Minagawa J, Seufferheld M, Padden S, Svensson B, Kolling DRJ, Crofts AR, Govindjee (2008) D1-arginine mutants (R257E, K and Q) of Chlamydomonas reinhardtii have a lowered QB redox potential: Analysis of thermoluminescence and fluorescence measurements. Photosynth Res 98: 449-468
[18]Kodru S, Malavath T , Devadasu E, Nellaepalli S , Subramanyam R, Govindjee (2015) The slow S to M rise of chlorophyll a fluorescence induction reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynth Res 125: 219-231
[19]Zhou Y , Schideman LC, Stirbet A, Rupassara SI, Govindjee, Seuffereleld MJ (2015) Characterization of a Chlamydomonas reinhardtii mutant strain with improved biomass production under low light and mixotrophic conditions. Algal Research, A177: 128-138
Anacystis nidulans & other Cyanobacteria
[1]Govindjee, Rabinowitch E (1960) Action spectrum of the second Emerson effect. Biophysic J 1: 73-89 (Anacystis nidulans was included here)
[2]Govindjee (1963) Observations on P750A from Anacystis nidulans. Naturwissenschaften 50: 720-721
[3]Govindjee, Cederstrand C, Rabinowitch E (1961) Existence of absorption bands at 730-740 and 750-760 millimicrons in algae of different divisions. Science. 134: 391-392 (Discovery of P750 in Anacystis nidulans)
[4]Ghosh AK, Govindjee (1966) Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophysic J 6: 611-619
[5]Papageorgiou GC, Govindjee (1967) Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans. Biophysic J 7: 375-390
[6]Papageorgiou GC, Govindjee (1968) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. Biophysic J 8: 1299-1315
[7]Cho F, Govindjee (1970) Low temperature (4-77 K) spectroscopy of Anacystis: Temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 151-161
[8]Govindjee, Mohanty PK (1972) Photochemical aspects of photosynthesis in blue-green algae [cyanobacteria]. In: Biology and Taxonomy of Blue-Green Algae (ed. T. Desikachary), U. Madras, Madras, India pp. 171-196
[9]Mohanty P, Govindjee (1973) Light-induced changes in the fluorescence yield of chlorophyll a in Anacystis nidulans. I. Relationships of slow fluorescence changes with structural changes. Biochim Biophys Acta. 305: 95-104
[10]Mohanty P, Govindjee (1973) Light-induced changes in the fluorescence yield of chlorophyll a in Anacystis nidulans. II. The fast changes and the effect of photosynthetic inhibitors on both the fast and slow fluorescence induction. Plant Cell Physiol 14: 611-629
[11]Singhal GS , Mohanty P, Govindjee (1981) Effects of preheating intact algal cells on pigments revealed by absorption and fluorescence spectra. Z für Pflanzenphysiologie 103: 217-228 (used Anacystis nidulans)
[12]Govindjee, Koike H ,. Inoue Y(1985) Thermoluminiscence and oxygen evolution from a thermophilic blue-green alga obtained after single-turnover light flashes. Photochem Photobiol 42: 579-585
[13]Cao J, Govindjee (1990) Anion effects on the electron acceptor side of Photosystem II in a transformable cyanobacterium Synechocystis 6803. Current Research in Photosynthesis. (M. Baltscheffsky ed.). I.2: 515-518. Kluwer Academic Publishers, Dordrecht, The Netherlands
[14]Govindjee, Vernotte C, Peteri B, Astier C, Etienne A-L (1990) Differential sensitivity of bicarbonate-reversible formate effects on herbicide-resistant mutants of Synechocystis 6714. FEBS Lett 267: 273-276
[15]Cao J , Vermaas WFJ, Govindjee (1991) Arginine residues in the D2 polypeptide may stabilize bicarbonate binding in Photosystem II of Synechocystis sp. PCC 6803. Biochim Biophys Acta 1059: 171-180
[16]Cao J , Ohad N , Hirschberg J, Xiong J , Govindjee (1992) Binding affinity of bicarbonate and formate in herbicide-resistant D1 mutants of Synechococcus sp. PCC 7942. Photosynth Res 34: 397-408
[17]Govindjee, Snel JFH, deVos OJ, Van Rensen JJS (1993) Antagonistic effects of light I and II on chlorophyll a fluorescence yield and P700 turnover as monitors of carbon dioxide depletion in intact algal and cyanobacterial cells. Physiol Plant 89: 143-148
[18]Renger G , Govindjee (Editors) (1993) How Plants and Cyanobacteria Make Oxygen: 25 Years of Period Four Oscillations. Photosynth Res 38: 211-468
[19]Strasser R J , Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61: 32-42
[20]Vernotte C, Briantais J-M, Astier C, Govindjee (1995) Differential effects of formate in single and double mutants of D1 in Synechocystis species PCC 6714. Biochim Biophys Acta 1229 : 296-301
[21]Keranen M , Mulo P, Aro E-M, Govindjee, Tyystjarvi E (1998) Thermoluminescence B and Q bands are at the same temperature in an autotrophic and a heterotrophic D1 protein mutant of Synechocystis sp. PCC 6803. In: Photosynthesis: Mechanisms and Effects. (Ed. G. Garab). Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1145-1148
[22]Papageorgiou GC, Govindjee, Govindjee R, Mimuro M, Stamatakis K, Alygizaki-Zorba A , Murata N (1998) Temperature and lipid unsaturation effects on plasma and thylakoid membranes of Synechocystis sp PCC6803. In: Photosynthesis: Mechanisms and Effects. (Ed. G. Garab), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 2485-2488
[23]Papageorgiou GC , Govindjee R. Govindjee, Mimuro M, Stamatakis K, Alygizaki-Zorba A , Murata N (1999) Light- induced and osmotically-induced changes in chlorophyll a fluorescence in two Synechocystis sp. PCC 6803 strains that differ in membrane lipid unsaturation. Photosynth Res 59: 125-136
[24]Nedbal L , Brezina V, Adamec F, Stys D , Oja V ,. Laisk A , Govindjee (2003) Negative feedback regulation is responsible for the non-linear modulation of photosynthetic activity in plants and cyanobacteria exposed to a dynamic light environment. Biochim Biophys Acta 1607: 5-17
[25]Kana R, Prášil O, Komárek O, Papageorgiou GC, Govindjee (2009) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942) Biochim Biophys Acta 1787: 1170–1178
[26]Kana R., Komárek O, Kotabová E, Papageorgiou GC, Govindjee, Prášil O (2012) The slow S to M fluorescence rise is missing in the RpaC mutant of Synechocystis sp. (PCC 6803). C.Lu (Ed.) Photosynthesis: Research for Food, Fuel and Future–15th International Conference on Photosynthesis, Symposium 16_13, pp. 499-502, Zhejiang University Press, Springer-Verlag GmbH
[27]Govindjee, Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Frontiers in Plant Science, Vol. 2, article 28: 1-17. DOI:10.3389/fpls.2011.00028
[28]Wang QJ, Singh A, Li H , Nedbal L, Sherman LA, Govindjee, Whitmarsh JC (2012) Net light-induced oxygen evolution in photosystem I deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1817:792--801
[29]Kana R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Govindjee, Prášil O (2012) The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochimn Biophys Acta 1817: 1237-1247
[30]Shevela D, Pishchalinikov R, Eichacker L A Govindjee (2013) Oxygenic photosynthesis in cyanobacteria. In: A. Srivastava et al. (eds.): Stress Biology of Cyanobacteria. Taylor & Francis, UK, pp. 3-40
[31]Najafpour M., Moghaddam AN, Shen J-R, Govindjee (2013) Water oxidation and water oxidizing complex in Cyanobacteria. In: A. Srivastava et al. (eds.): Stress Biology of Cyanobacteria. Taylor & Francis, UK. pages 41-60